

Western Australian Certificate of Education ATAR course examination, 2016

Question/Answer booklet

PHYSICS				one of e the la									
Student number: In	figures												
In	words	-										 	
Time allowed for this pap Reading time before commencing Working time:			mini ee ho					ans	nber o wer b oplica	ook	lets u		
Materials required/recom To be provided by the supervise This Question/Answer booklet Formulae and Data booklet		beb	for	this	s pa	ape	r						

_

To be provided by the candidate

- Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
- Special items: non-programmable calculators approved for use in this examination, drawing templates, drawing compass and a protractor

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised material. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Copyright © School Curriculum and Standards Authority 2016

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Suggested working time (minutes)	Marks available	Percentage of examination
Section One Short response	13	13	50	54	30
Section Two Problem-solving	7	7	90	90	50
Section Three Comprehension	2	2	40	36	20
	·			Total	100

Total

Instructions to candidates

- 1. The rules for the conduct of the Western Australian Certificate of Education ATAR course examinations are detailed in the Year 12 Information Handbook 2016. Sitting this examination implies that you agree to abide by these rules.
- 2. Write your answers in this Question/Answer booklet.
- 3. When calculating or estimating answers, show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning.

In calculations, give final answers to three significant figures and include appropriate units where applicable.

In estimates, give final answers to a maximum of two significant figures and include appropriate units where applicable.

- 4. You must be careful to confine your answers to the specific questions asked and to follow any instructions that are specific to a particular question.
- 5. Additional working space pages at the end of this Question/Answer booklet are for planning or continuing an answer. If you use these pages, indicate at the original answer, the page number it is planned/continued on and write the question number being planned/continued on the additional working space page.
- 6. The Formulae and Data booklet is not to be handed in with your Question/Answer booklet.

30% (54 Marks)

Section One: Short response

This section has **13** questions. Answer **all** questions. Write your answers in the spaces provided.

When calculating numerical answers, show your working or reasoning clearly. Give final answers to **three** significant figures and include appropriate units where applicable.

When estimating numerical answers, show your working or reasoning clearly. Give final answers to a maximum of **two** significant figures and include appropriate units where applicable.

Additional working space pages at the end of this Question/Answer booklet are for planning or continuing an answer. If you use these pages, indicate at the original answer, the page number it is planned/continued on and write the question number being planned/continued on the additional working space page.

Suggested working time: 50 minutes.

Question 1

(2 marks)

List **two** properties of electric or magnetic fields that are shown on field diagrams.

One:			
Two:		 	

Question 2

(3 marks)

A 78.5 kg hiker climbs up a mountain. He moves from an elevation of 155 m above sea level to the top of a peak which is 983 m above sea level. Calculate his gain in potential energy. Include units with your answer.

Answer _____ Unit _____

A cannon fires a cannon ball horizontally at speed of 50.0 m s⁻¹ from the top of a bridge that is 100 m above the surface of a lake below. Ignoring air resistance, calculate the velocity of the cannon ball just before it hits the water.

Answer ______ m s⁻¹ at an angle of ______ to the water.

(d)

Sirius appears as the brightest star in the night sky. It is actually a binary star consisting of Sirius A, a large blue-white star, and Sirius B, a white dwarf. Our view of the Sirius star system is such that there are times when Sirius B is coming toward us and times when it is going away from us. When Sirius B is moving toward us:

5

Sirius A will be (a)

Question 4

- А moving toward us, relative to Sirius B.
- В moving away from us, relative to Sirius B.
- Compared to the speed of light approaching us from Sirius A, the speed of the light (b) approaching us from Sirius B will be (1 mark)
 - А the same.
 - В less.
 - С greater.

Your answer

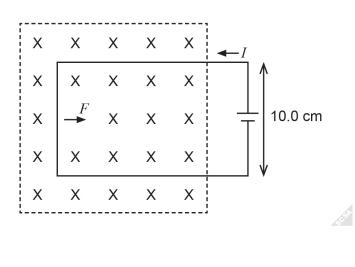
Your answer _____

An astronomer views a spectrum of the visible light from Sirius B. Describe one feature (C) of this spectrum that would indicate Sirius B is moving toward the astronomer. (2 marks)

Big Bang theory predicts the Sirius system should be

- А moving toward us. В moving away from us.
- С keeping a constant distance.

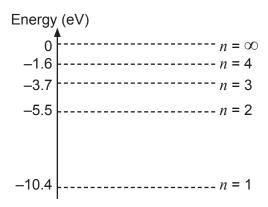
Your answer _____


(5 marks)

(1 mark)

(1 mark)

A rectangular wire loop is placed into a uniform magnetic field, with the plane of the loop perpendicular to the magnetic field. The wire carries a current *I* of 0.250 A. The magnetic field is directed into the page. A force *F* of 3.20×10^{-2} N is measured. Calculate the magnitude of the magnetic field strength. Include appropriate units.


6

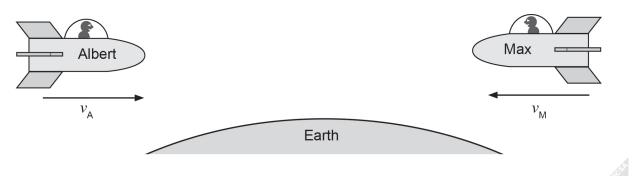
Answer _____ Unit _____

Some of the electron energy levels for atomic mercury are shown in the following diagram.

7

Indicate which one of the following transitions is the most energetic by circling it.

$$n = 4$$
 to $n = 3$ $n = 2$ to $n = 1$ $n = 4$ to $n = 1$


Determine the frequency and wavelength of the light emitted when the atom makes the most energetic of the above transitions.

Frequency is _____ Hz

Wavelength is _____ m

(4 marks)

Two spaceships, 'Albert' and 'Max' are travelling toward each other. Each has a speed of 0.750*c* as measured in the Earth's reference frame.

Calculate the velocity of Max as measured by the crew on spaceship Albert.

Answer _____ m s⁻¹

Question 8

(4 marks)

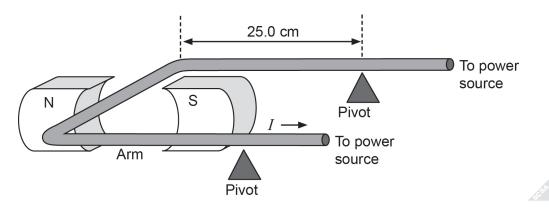
An AC generator has 131 coils in a square of side length 0.137 m which rotates at 309 rpm in a magnetic field of strength 0.113 T. Determine both the peak emf and the rms emf generated.

Answer peak _____ V

Answer rms _____ V

The most probable electron-proton distance in a hydrogen atom in its ground state is 5.29×10^{-11} m. Determine the electrostatic force in newtons exerted on the proton by the electron in this state.

Answer _____ N

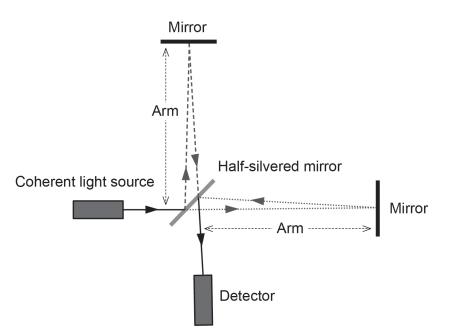

Direction _____

Question 10

Question 9

(4 marks)

A wire carrying a current of 1.68 A has 8.75×10^{-2} m of its length passed through a 4.44×10^{-2} T magnetic field at right angles to it as shown below. The circuit is part of an apparatus that is able to measure the torque produced by the current passing through the magnetic field.



Given that the arm has a length of 25.0 cm from the wire in the field to the pivot point, calculate the torque produced. Include direction with your answer.

Direction _____

(5 marks)

An interferometer is a device that splits a single beam of laser light into two and sends the two separate beams in two perpendicular directions. The beams are reflected at the ends of their separate paths, return and are recombined to form an interference pattern at the detector.

(a) The laser used in an interferometer is a near infra-red, 808 nm laser. If the two reflected beams are initially in phase and the interference pattern changes to produce perfect destructive interference (180° out of phase) due to a change in length of one of the arms, calculate the change in length of the arm.

Answer _____ m

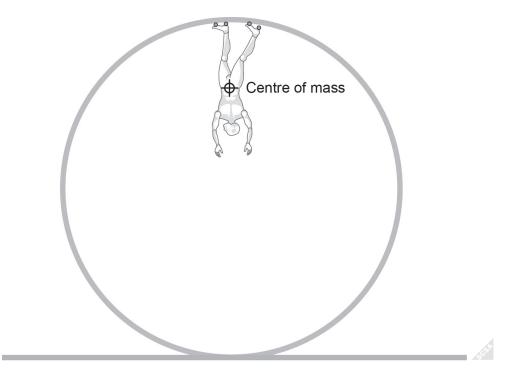
This device is used to detect gravitational waves. As a gravitational wave passes through the interferometer, it creates a small change in length of one or both arms.

(b) An interferometer, with 4 km long perpendicular arms, recently detected gravitational waves. Describe how the direction of the gravitational wave relative to the interferometer would affect its detection. (2 marks)

(6 marks)

Muons are created in the upper atmosphere with speeds of 0.990c or more. Their average lifetime is 2.20 µs measured at low speeds in the laboratory. A simple calculation shows that most should only travel about 660 m before decaying. Thus, very few muons should ever reach sea level.

(a) Using relativistic mechanics, calculate how far a muon can travel according to an observer on Earth. (4 marks)


Answer _____ m

(b) Explain why many more muons reach the surface of Earth than predicted classically. (2 marks)

(5 marks)

A 53 kg skater is attempting to complete a loop that is 2.50 m in radius. Estimate the minimum speed at the top of the loop needed for the skater to maintain contact with the top of the loop.

12

Answer _____ m s⁻¹

End of Section One

PHYSICS

This page has been left blank intentionally

Section Two: Problem-solving

This section has seven (7) questions. Answer all questions. Write your answers in the spaces provided.

14

When calculating numerical answers, show your working or reasoning clearly. Give final answers to three significant figures and include appropriate units where applicable.

When estimating numerical answers, show your working or reasoning clearly. Give final answers to a maximum of **two** significant figures and include appropriate units where applicable.

Additional working space pages at the end of this Question/Answer booklet are for planning or continuing an answer. If you use these pages, indicate at the original answer, the page number it is planned/continued on and write the question number being planned/continued on the additional working space page.

Suggested working time: 90 minutes.

Question 14

An electron microscope creates a coherent beam of electrons which then travels through two narrow slits. The resulting interference pattern is detected on a photographic plate. The speed of the electrons is 1.00% of the speed of light.

(a) Show that the de Broglie wavelength of the electrons used is 2.43×10^{-10} m. (2 marks)

hat you expect to see on the photographic plate.	(2 marks)
behaviour of the electrons in this experiment.	(2 marks
	hat you expect to see on the photographic plate.

(12 marks)

(d) If the experiment were to be repeated using protons, at what speed would a proton need to travel to have the same de Broglie wavelength as the electrons? (2 marks)

Answer _____ m s⁻¹

(e) Calculate the potential difference required for the electron microscope to accelerate the electrons to 1.00% of the speed of light. (4 marks)

Answer _____ V

(16 marks)

On February 6 1971, during the Apollo 14 mission, astronaut Alan Shepard hit a golf ball on the Moon. The golf club launched the ball at an angle of 24.1° to the ground with an initial speed of 45.0 m s^{-1} .

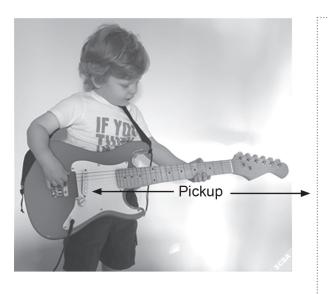
- (a) Construct a free body diagram below, showing the force(s) acting on the golf ball about halfway between it being struck and its highest point. (2 marks)
- (b) Calculate the horizontal and vertical components of the initial velocity. (2 marks) Answer *u*_h_____ __ m s⁻¹ Answer *u*, _____ m s⁻¹ (C) Assuming the golf ball travelled over a level surface, calculate the (i) time taken to hit the surface (2 marks) Answer _____ _ S (ii) horizontal distance the golf ball travelled. (2 marks)

DO NOT WRITE IN THIS AREA AS IT WILL BE CUT OFF

Answer _____

_ m

(d) The highest point on the Moon's surface is 1.08×10^4 m higher than the mean radius of the Moon. If the golf ball is hit horizontally from this peak, determine the initial velocity required for the golf ball to completely circle the Moon and return to approximately the same spot. (4 marks)


Answer _____ m s⁻¹

(e) Explain, with reference to relevant formulae, why the gravitational field on the Moon's surface is less than the field on Earth's surface. (4 marks)

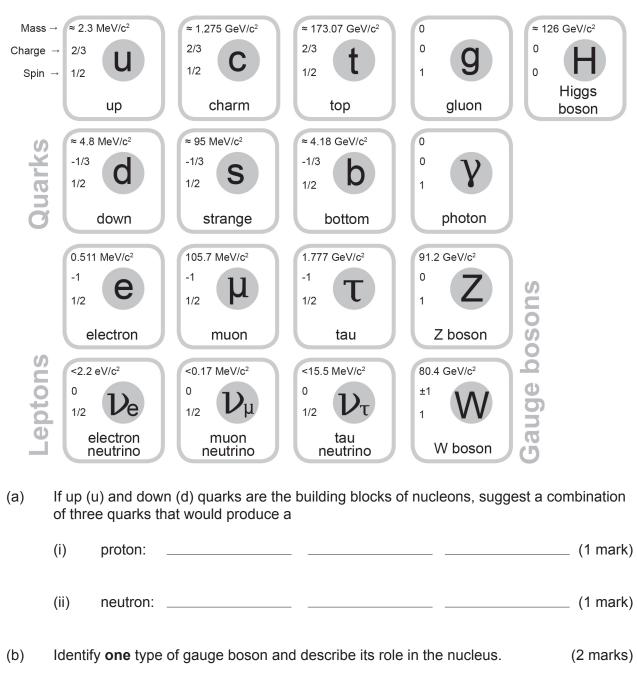
(13 marks)

An electric guitar pickup works by converting the vibrations of the strings to an electrical current which is then amplified. The amplified current is then sent to a speaker that converts the fluctuations in the current to sound.

18

For copyright reasons this image cannot be reproduced in the online version of this document, but may be viewed at http://creekdontrise.com/acoustic/banjo_pickups/ banjo_pickup.htm

(a) Refer to the diagram to explain how the vibration of a metal string is converted to an electrical current that varies at the string's frequency. (5 marks)


(b) Using an appropriate formula, describe **two** changes to the design of the pickup that would enable it to supply a larger potential difference. (3 marks)

(c) If the pickup is removed from the guitar, the strings will oscillate for longer before becoming motionless. Explain what makes the guitar strings come to rest quicker with the pickup in place. (2 marks)

(d) A 5.50 cm section of wire is moved at 25.0 m s⁻¹ through a magnetic field of 43.0 mT. Calculate the maximum potential difference generated and give its units. (3 marks)

_____ Units _____ Answer ____

The elementary particles of the Standard Model are shown below.

(8 marks)

Muons and taus are created in a particle accelerator and accelerated to the same (C) velocity. Sketch their paths if the two particles were directed into a magnetic field as shown in the diagram below. (4 marks)

> $\times \times$ \times Х \times \times \times \times \times \times \times \times \times Х $\times \times$ \times \times \times \times \times \times \times \times Х $\times \times$ \times Х \times $\times \times$ \times \times Х \times \times

Path of au

A person climbs a ladder and holds a can of paint as shown in the photograph below.

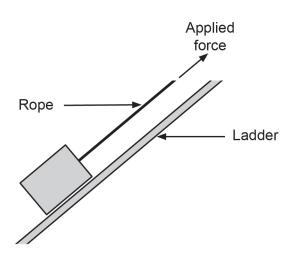
Position A

The ladder is 2.78 m long from the ground to the roof gutter of the house and rests on the gutter 2.40 m above the ground. The woman stands with her feet 0.500 m above the ground. The ladder has a negligible mass, the woman has a mass of 58.0 kg and the can of paint has a mass of 4.25 kg.

(a) Calculate the force that the roof gutter exerts on the ladder in Position A. Assume that this force acts at a right angle to the ladder. (7 marks)

Answer _____ N

23

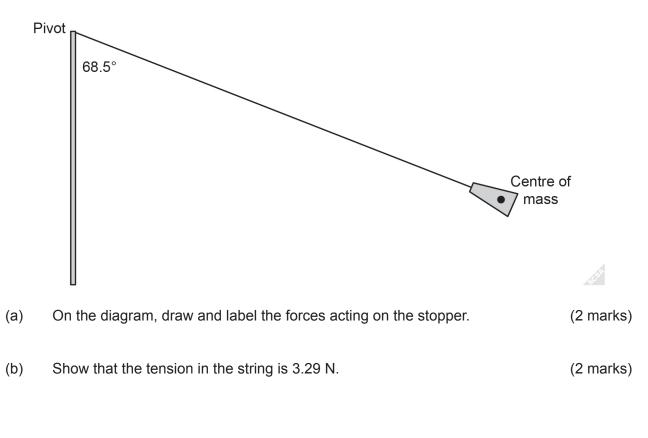

Position B

(b) Explain how the force exerted on the ladder by the roof gutter changes as the can of paint is moved from Position A to Position B (shown above). (3 marks)

(c) State whether the ladder and person are in equilibrium in Position B. Explain your reasoning. Calculations are **not** required. (4 marks)

Question 18 (continued)

(d) The ladder is then extended to form a 40.0° angle to the ground. The ladder is used as a ramp to pull a 35.1 kg box onto the roof by a rope parallel to the ladder. Calculate the tension in the rope if the box is stationary as shown. Assume that friction is negligible. (3 marks)



Answer _____ N

(8 marks)

A student is conducting an experiment by tying a rubber stopper to a string and swinging it in a horizontal circle as shown in the diagram below. The stopper has a mass of 0.123 kg and the distance along the string from the pivot to the centre of mass of the stopper is 1.43 m.

25

(c) Calculate the speed of the stopper.

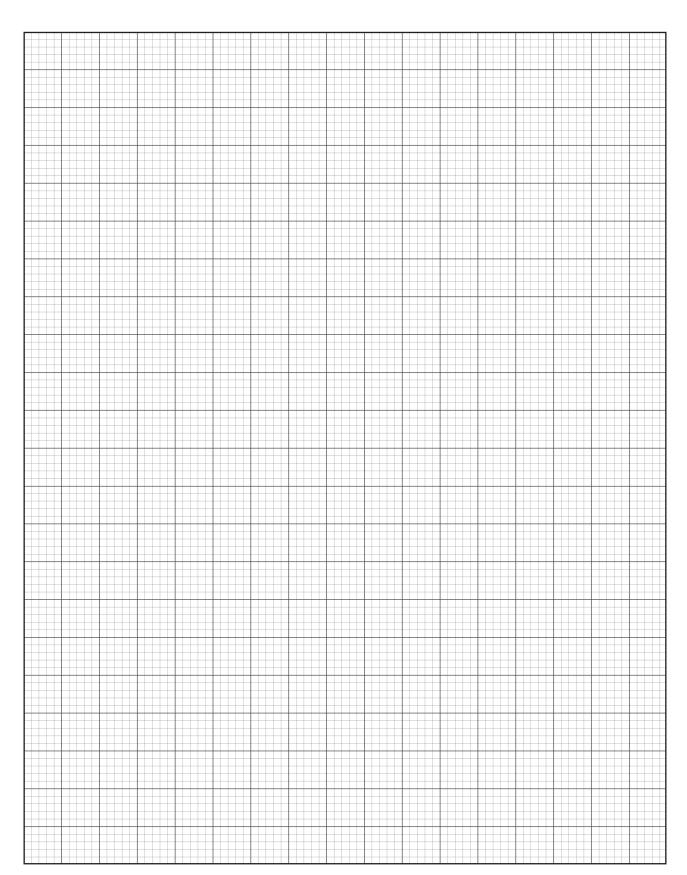
(4 marks)

Answer _____ m s⁻¹

(16 marks)

A light beam is directed toward a metal surface and electrons are ejected from it. The wavelength of the incident beam is varied between 238 nm (ultraviolet) and 464 nm (green). The maximum kinetic energy of the ejected photoelectrons is measured and recorded in the table below.

26

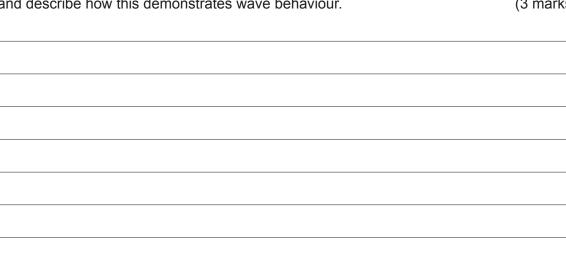

(a) Complete the following table by calculating the missing energy of the incident photons for each wavelength. Show your working in the space below. (2 marks)

Wavelength of incident light (nm)	Energy of incident light (eV)	Maximum kinetic energy of photoelectrons (eV)
238		3.12
250	4.97	2.87
284	4.38	2.28
351		1.44
416	2.99	0.89
464	2.68	0.58

- (b) Plot the data from the table above on the grid provided, demonstrating the relationship between the energy of the incident photons on the horizontal axis and the maximum kinetic energy of photoelectrons on the vertical axis. Draw the line of best fit. (4 marks)
- (c) Using your graph, determine the work function of the metal. Express your answer in appropriate significant figures and include units. (4 marks)

Answer _____ Units ___

See next page


A spare grid is provided at the end of this Question/Answer Booklet. If you need to use it, cross out this attempt.

PHYSICS

Question 20 (continued)

(d) Explain how the failure of red light to cause the emission of electrons demonstrates the particle nature of light. (3 marks)

(e) In this photoelectric effect investigation, light is best described as a particle. There are other characteristics that demonstrate light to be a wave. State **one** such characteristic and describe how this demonstrates wave behaviour. (3 marks)

End of Section Two

20% (36 Marks)

Section Three: Comprehension

This section has **two (2)** questions. You must answer **both** questions. Write your answers in the spaces provided.

When calculating numerical answers, show your working or reasoning clearly. Give final answers to **three** significant figures and include appropriate units where applicable.

When estimating numerical answers, show your working or reasoning clearly. Give final answers to a maximum of **two** significant figures and include appropriate units where applicable.

Additional working space pages at the end of this Question/Answer booklet are for planning or continuing an answer. If you use these pages, indicate at the original answer, the page number it is planned/continued on and write the question number being planned/continued on the additional working space page.

Suggested working time: 40 minutes.

Question 21

(16 marks)

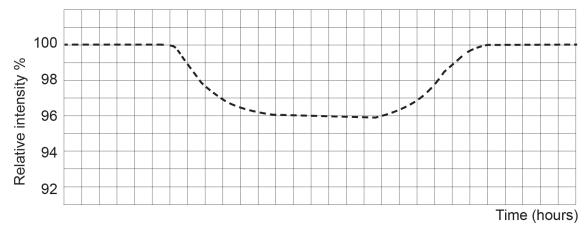
For copyright reasons this text cannot be reproduced in the online version of this document, but may be viewed at http://phys.org/news/2015-09-earth-like-planets-small-starsmagnetic.html#nRlv

For copyright reasons this text cannot be reproduced in the online version of this document, but may be viewed at www.universetoday.com/105383/detecting-the-magnetic-fields-ofexoplanets-may-help-determine-habitability/

Question 21 (continued)

For copyright reasons this text cannot be reproduced in the online version of this document, but may be viewed at www.universetoday.com/105383/detecting-the-magnetic-fields-ofexoplanets-may-help-determine-habitability/

- (a) How long, in Earth years, does light take to reach Earth from HD 189733b? (1 mark)
 Answer ______ years
 (b) Explain how a large planet orbiting a relatively small star makes the planet easier to discover. (1 mark)
- (c) Calculate the mean radius of orbit of HD 189733b.


(6 marks)

Answer _____ m

(d) Particles ejected from the star are moving toward the planet's surface. At a point where the planet's magnetic field is at a right angle to the particles' motion, explain the protective effect of the magnetic field, if any, against the following:

(i)	an electron arriving from the star	(2 marks)
(!!)		
	a LIV photon arriving from the star	(2 marke)
(ii)	a UV photon arriving from the star.	(2 marks)
(11)	a UV photon arriving from the star.	(2 marks)
(11)	a UV photon arriving from the star.	(2 marks)

(e) Below is a plot showing the dip in light intensity, due only to the planet dimensions, as the planet passes in front of its star. Modify the given plot by sketching how the light intensity drops when including the effect of a strong bow shock. (4 marks)

Light intensity variation

31

X-ray fluorescence (XRF) analysis and application

Art forgery is the creating and selling of works of art which are credited falsely to other artists. Modern dating and analysis techniques have made the identification of forged artwork much easier.

32

X-ray fluorescence is the emission of characteristic X-rays having specific photon energies from a material that has been excited. This is widely used for chemical analysis, such as in determining the materials used in paintings.

In order to excite an atom to produce an X-ray that is unique to that element, external stimulation in the form of high-energy particles or X-rays removes an inner K shell electron. The X-ray source uses a known element and bombards it with accelerated electrons as a form of external stimulation. As an electron in the atom falls back to replace the removed electron, it produces an X-ray of a known energy. This specific X-ray is then directed to the

unknown material, providing external stimulation and ejecting its innermost electron. Following the ejection of an inner electron, an electron from the unknown element's outer shells drops into its place producing unique energy transitions. The main transitions are given names:

- $L \rightarrow K$ transition is traditionally called K α ,
- $M \rightarrow K$ transition is called $K\beta$,
- $M \rightarrow L$ transition is called $L\alpha$, and so on.

Each of these transitions yields a fluorescent photon which can be detected and analysed. Once sorted, the intensity of each characteristic radiation is related directly to the amount of each element in the material.

Eiected

electron

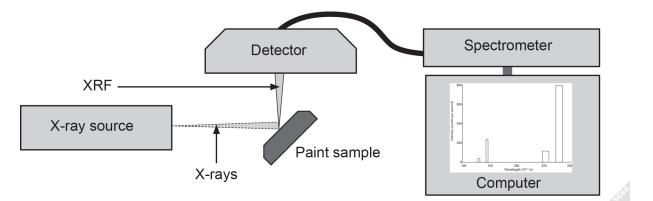
External

stimulation

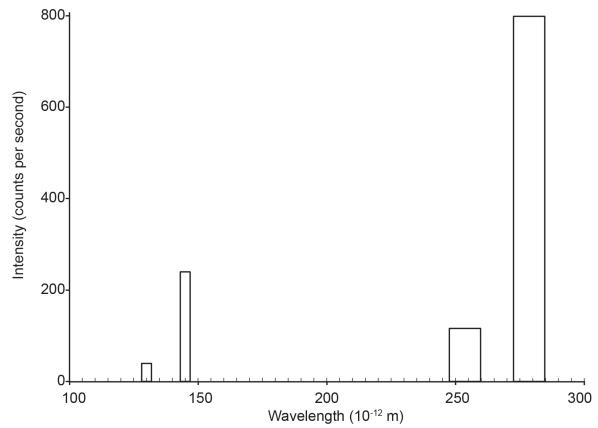
Atomic number	Element	Symbol	K α energy (keV)	K β energy (keV)
22	titanium	Ti	4.511	4.931
30	zinc	Zn	8.639	9.572
45	rhodium	Rh	20.216	22.724
50	tin	Sn	25.271	28.486

Table 1: Characteristic K α and K β fluorescent X-ray energies for various elements.

The most straightforward and frequent application of XRF in the art industry is to determine the elements that make different paint colours. The question of whether a particular painting is a forgery or an authentic one, can be determined if the presence of a particular paint provides evidence for the age of the painted area. For example, titanium white (titanium dioxide,TiO₂) has only been available since about 1920 as a replacement for zinc white (zinc oxide, ZnO) which was widely used from 1850 until it was replaced around 1920.


A painting offered for sale recently was claimed to be painted in about 1890. An XRF elemental mapping was carried out on the white areas of the suspect painting. The analysis was performed as shown in the diagram on page 33.

Atomic nucleus


Radiation energy

- Κα Κβ

PHYSICS

The incident X-ray beam consisted of the K α emission from rhodium in the X-ray source. The XRF results are shown below.

(a) The rhodium is bombarded with high energy electrons to produce the K α photons. The energy required to remove the electron from the K shell is greater than the K α energy. Explain where the extra energy goes. (2 marks)

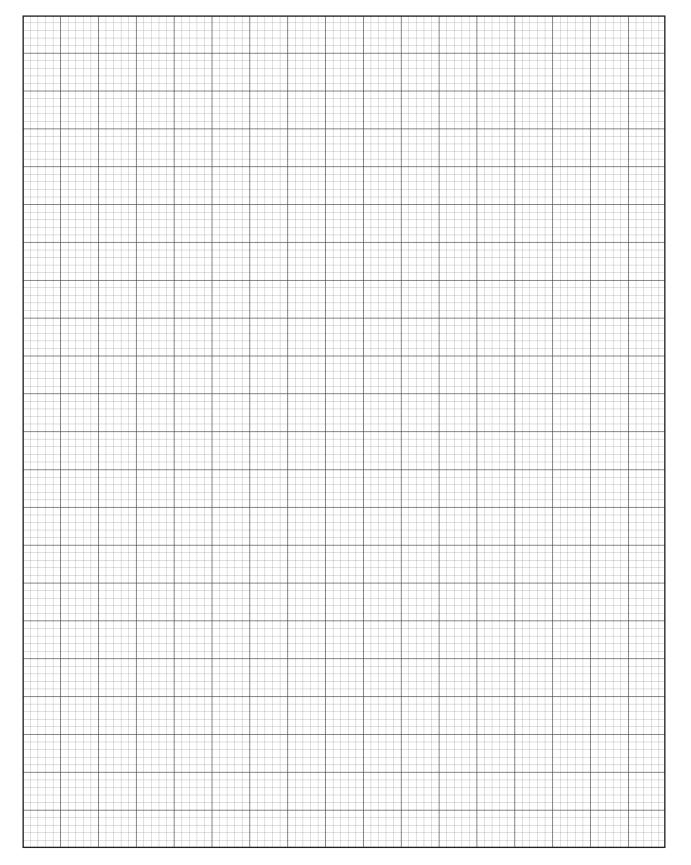
33

Question 22 (continued)

(b) Consider the XRF spectrum on page 33. K α produces one of the peaks at 130 × 10⁻¹² m and 145 × 10⁻¹² m, while K β produces the other. Which emission, K α or K β , is more likely to occur? Explain your answer. (3 marks)

- (c) The equipment set up as discussed in the article is used to detect titanium.
 - (i) Explain why it would **not** be possible to detect the K α fluorescent X-ray from tin. (2 marks)

 (ii) The electrons that bombard rhodium in the X-ray source have an energy of 60.0 keV. If one of these incident electrons caused an electron to be ejected from the K shell of a rhodium atom, calculate the maximum speed of the ejected electron. Ignore any relativistic effects. (4 marks) (d) Looking at the resultant XRF spectrum, is there any evidence of titanium dioxide present in the painting? Justify your answer. (6 marks)


(e) Is the painting a forgery? Explain your reasoning. (3 marks)

_

PHYSICS	36
Additional working space	
Question number:	

Question number:		

37

ACKNOWLEDGEMENTS

	Diagram: Stannered. (2007). <i>File:Interferometer.svg</i> . Retrieved June, 2016, from https://commons.wikimedia.org/wiki/File:Interferometer.svg Used under Creative Commons Attribution-ShareAlike 3.0 Unported licence.
Question 16	Pickup diagram adapted from: Race, P. (2016). <i>Banjo pickups, 2016</i> (Magnetic pickups). Retrieved June, 2016, from http://creekdontrise.com/acoustic/banjo_pickups/banjo_pickup.htm
Question 17	Standard Model image: MissMJ. (2006). <i>File:Standard Model of Elementary Particles.svg</i> . Retrieved June, 2016, from https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementa ry_Particles.svg Used under Creative Commons Attribution 3.0 Unported licence.
Question 21	Introductory text (paras 1–3) adapted from: Kelley, P. (2015, September 29). <i>Earth-like planets around small stars likely have</i> <i>protective magnetic fields, aiding chance for life</i> . Retrieved June, 2016,from http://phys.org/news/2015-09-earth-like-planets-small-stars- magnetic.html#nRlv
	Introductory text (paras 4–5) adapted from: Hall, S. (2013, October 9). <i>Detecting the magnetic fields of exoplanets may help determine</i> <i>habitability</i> . Retrieved June, 2016, from www.universetoday.com/105383/detecting-the-magnetic-fields-of- exoplanets-may-help-determine-habitability/
	Bow shock image: NASA. (2010). <i>NASA sun earth</i> . Retrieved June, 2016, from www.flickr.com/photos/gsfc/4445502419 NASA/GSFC/SOHO/ESA Used under Creative Commons Attribution 2.0 Generic licence.
Question 22	Introductory text information adapted from:
	<i>X-ray fluorescence</i> . (2016). Retrieved June, 2016, from https://en.wikipedia.org/wiki/X-ray_fluorescence
	Used under Creative Commons Attribution-ShareAlike 3.0 Unported licence.
	Used under Creative Commons Attribution-ShareAlike 3.0 Unported
	Used under Creative Commons Attribution-ShareAlike 3.0 Unported licence. Szokefalvi-Nagy, Z., Demeter, I., Kocsonya, A., & Kovacs, I. (2004, November). Non-destructive XRF analysis of paintings. <i>Nuclear Instruments and Methods in Physics Research Section B: Beam</i>
	 Used under Creative Commons Attribution-ShareAlike 3.0 Unported licence. Szokefalvi-Nagy, Z., Demeter, I., Kocsonya, A., & Kovacs, I. (2004, November). Non-destructive XRF analysis of paintings. <i>Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms</i>, 226(1–2), 53–59. <i>Art forgery</i>. (2016). Retrieved June, 2016, from https://en.wikipedia.org/wiki/Art_forgery Used under Creative Commons Attribution-ShareAlike 3.0 Unported
	 Used under Creative Commons Attribution-ShareAlike 3.0 Unported licence. Szokefalvi-Nagy, Z., Demeter, I., Kocsonya, A., & Kovacs, I. (2004, November). Non-destructive XRF analysis of paintings. <i>Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms</i>, 226(1–2), 53–59. <i>Art forgery</i>. (2016). Retrieved June, 2016, from https://en.wikipedia.org/wiki/Art_forgery Used under Creative Commons Attribution-ShareAlike 3.0 Unported licence. <i>Zinc oxide</i>. (2016). Retrieved June, 2016, from https://en.wikipedia.org/wiki/Zinc_oxide Used under Creative Commons Attribution-ShareAlike 3.0 Unported

This document – apart from any third party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the *Copyright Act 1968* or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the *Copyright Act 1968* or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons <u>Attribution 4.0 International (CC BY)</u> licence.

Published by the School Curriculum and Standards Authority of Western Australia 303 Sevenoaks Street CANNINGTON WA 6107