Content

Rationale .. 1
Course outcomes .. 2
Organisation ... 3
 Structure of the syllabus ... 3
 Organisation of content .. 4
 Representation of the general capabilities .. 7
 Representation of the cross-curriculum priorities ... 8
Unit 3 ... 10
 Unit description ... 10
 Unit content .. 10
Unit 4 ... 13
 Unit description ... 13
 Unit content .. 13
School-based assessment .. 16
 Externally set task .. 17
 Grading .. 17
Appendix 1 – Grade descriptions Year 12 ... 18
Rationale

Aviation involves flying by mechanical means, especially with heavier-than-air craft. The study of aviation therefore encompasses the application of skills and understandings about the nature of the atmosphere, aerodynamics and the systems and structures designed to achieve safe and efficient flight.

Aviation has transformed the world in which we live. Efficient and reliable air transport has changed the way people travel, work, communicate and relate to each other. Simultaneously, developments in military aviation and aerospace technology have redefined approaches to national and international security. Aviation contributes significantly to the global economy and both directly and indirectly affects the lives of the world’s citizens. The nature and scope of aviation is constantly changing, driven by major developments in technology, science, education and economics. In Australia, aviation has been fundamental to overcoming problems associated with the country’s physical size and population distribution.

The Aviation General course draws from such diverse disciplines as science, engineering, environmental science, the social sciences, mathematics, English and information technology. It encompasses a range of mathematical, technological and humanities concepts and draws together a broad variety of skills, processes, understandings and strategies that promote the safe and effective operations of the aviation industry. The Aviation General course provides students with the opportunity to investigate the importance of aviation to our society and learn the skills and knowledge required to make informed decisions on issues relating to aviation and associated industries.

The Aviation General course caters for those students seeking a career in aviation, science or engineering.
Course outcomes

The Aviation General course is designed to facilitate achievement of the following outcomes.

Outcome 1 – Aviation systems
Students understand components of, and interactions between, aviation systems.
In achieving this outcome, students:
- understand the components of aviation systems
- understand the interactions between aviation systems.

Outcome 2 – Aviation operations
Students apply processes to plan aviation operations.
In achieving this outcome, students:
- collect, organise and interpret operational information
- plan aviation operations.

Outcome 3 – Aviation applications
Students apply a range of skills and processes to perform specific aviation operations.
In achieving this outcome, students:
- apply operational, organisational and communication skills and processes appropriate to aviation operations
- monitor and evaluate variables in aviation systems
- implement a course of action and manage resources.

Outcome 4 – Aviation development
Students understand the influences on aviation developments and their impact on society.
In achieving this outcome, students:
- understand significant aviation developments and their impact on society
- understand that significant aviation development is influenced by the needs of society.
Organisation

This course is organised into a Year 11 syllabus and a Year 12 syllabus. The cognitive complexity of the syllabus content increases from Year 11 to Year 12.

Structure of the syllabus

The Year 12 syllabus is divided into two units which are delivered as a pair. The notional time for the pair of units is 110 class contact hours.

Unit 3

The focus of this unit is the further development of aviation concepts related to flying training and general aviation. Students develop their understanding of aerodynamics. They apply the terminology and principles of navigation to learn how to prepare aeronautical maps for visual navigation. They explore the formation and interaction of weather on aviation operations. Students understand the principles, purpose and need for safety management in aviation. Students consider issues associated with flight crew resource management and the development of threat and error management (TEM).

In Aviation development, they study a selection of current developments in aviation looking at the factors driving the developments, and their likely impact.

Unit 4

The focus for this unit is aviation concepts related to flying operations and general aviation. In this unit, students further their understanding of rotary wing aircraft and aircraft engines, including the principles associated with turbine engines. They investigate different types of propeller design and their operation, and further develop their ability to interpret performance charts for light aircraft. Students are introduced to advanced cockpit displays and examine advanced aircraft navigation and electronic aids.

They examine human physiology pertinent to flight. Visual and physiological deficiencies and their implications for flight are also explored. They consider the effects of toxic substances and acceleration forces on flight crew.

In aviation development, students study a selection of current issues facing the aviation industry and consider their likely impact on aviation and the community.

Each unit includes:

- a unit description – a short description of the focus of the unit
- unit content – the content to be taught and learned.
Organisation of content

The course content is divided into five content areas:

- Aerodynamics
- Performance and operation
- Human factors
- Aviation skills
- Aviation development.

Aerodynamics

Principles of flight

The nature of air as a fluid interacting with an aircraft underpins the understandings of aerodynamics (Bernoulli’s Principle, Newton’s Third Law of Motion). Various factors affect the capacity to generate and/or influence the aircraft lifting and controlling forces (lift/drag formulae). The forces acting on an aircraft in subsonic phases of flight, turning, climbing, descending and cruise are explored, together with aircraft controls and their effects in the air, on the ground, stability and instability of aircraft and the ability of aircraft to manoeuvre.

Performance and operation

Navigation, meteorology and radio communication

The fundamental function of aviation is to move aircraft through the sky from one point to another in a variety of meteorological conditions. Communication supports the safety of aircraft in the air and on the ground. Understanding of basic principles of navigation, propagation and communication, interpretation of aviation charts and forecasts, development of navigation processes and techniques and applying meteorological influences, and the development of correct use of radio communication and phraseology, ensures safer skies and airports.

Aircraft performance

The limiting effects of environmental conditions and aircraft power factors are evaluated and applied to the operation of the aircraft during ground movement and throughout the flight. Aircraft limitations include weight and balance of the aircraft through loading, take-off and climb performance, altitude, endurance, range and speed according to available engine power and atmospheric conditions. A number of processes are involved to select information accurately, calculate, interpret and apply performance and operational data.

Knowledge of the basic structure, principles of operation and operating procedures for a typical light aircraft engine are explored.
Human factors

Aviation safety

Aviation safety relates to the recognition of responsibilities in operating and working with aircraft and at airports. Knowing normal operational and emergency procedures and processes and safety management strategies protects lives in the aircraft and on the ground. The provision of a secure operational aviation environment, free from deliberate interference due to sabotage or terrorism, has become an area of increasing concern in both commercial and military aviation. Lessons of safety and security have been learnt from past incidents and accidents. Case studies are used to identify causal factors in aviation incidents and accidents, and to investigate aviation occupational safety and health (OSH) issues.

Human performance and resource management

The physical, psychological and emotional makeup of the human organism places limitations on safe human performance in aviation operations. This strongly influences resource management in aviation, including the effective use of human resources, physical resources and information. Tools such as checklists are utilised to self-assess an operation and one’s ability to perform it.

Aviation skills

The following skills are developed progressively across Year 11 and Year 12:

Practical flight skills

Demonstrate:

- normal take-off and landing
- climb, descent, turns (Rate 1, 30, 45, 60 degrees)
- use of flaps
- entry and recovery from power off stall
- interpretation of the Automatic Direction Finder (ADF), Very High Frequency Omnidirectional Radio Beacons (VOR), Instrument Landing System (ILS), Visual Approach Slope Guidance System including Visual Approach Slope Indicator System (VASIS), T-VASIS and Precision Approach Slope Indicator (PAPI) and Distance Measuring Equipment (DME)
- homing using an ADF and identification of station passage

Process skills

- identify potential safety hazards
- communicate effectively with others in verbal or written forms
- record observations verbally and graphically
- research and extract relevant information
- make reliable measurements and record data accurately
- manipulate aviation navigation equipment to derive information necessary to complete flight plans
Aviation development

Aviation history and developmental influences

Many individual achievements and technological developments have resulted in the rapid expansion of the aviation industry. While early aviation was driven by the desire to fly, subsequent advances in technology have impacted significantly on aviation development and our society. The recognition of the achievements of pioneering individuals, and an understanding of the technological advancements in aviation, provide an insight into the future trends of air travel.

The physical structure and design of aircraft taking account of the stresses acting on an aircraft during every flight are explored. Knowledge of the evolution of aircraft systems and structures leads to a clearer understanding of present design and appreciation of future innovations.

Mathematical skills expected of students studying the Aviation General course

The Aviation General course requires students to use the mathematical skills they have developed through the Year 7–10 Mathematics curriculum.

It is assumed that students will be able to:

- perform calculations involving addition, subtraction, multiplication and division of quantities
- perform approximate evaluations of numerical expressions
- express fractions as percentages, and percentages as fractions
- calculate percentages
- recognise and use ratios
- substitute physical quantities into an equation using consistent units so as to calculate one quantity and check the dimensional consistency of such calculations
- solve simple algebraic equations
- translate information between graphical, numerical and algebraic forms
- construct and interpret frequency tables and diagrams, pie charts and histograms.
Representation of the general capabilities

The general capabilities encompass the knowledge, skills, behaviours and dispositions that will assist students to live and work successfully in the twenty-first century. Teachers may find opportunities to incorporate the capabilities into the teaching and learning program for the Aviation General course. The general capabilities are not assessed unless they are identified within the specified unit content.

Literacy

Literacy is important in students’ development of inquiry skills and their understanding of content related to aviation as a human enterprise. Students gather, interpret, synthesise and critically analyse information presented in a wide range of formats and representations (including text, flow diagrams, symbols, graphs and tables). They evaluate information sources and compare and contrast ideas, information and opinions presented within and between texts. They communicate processes and ideas logically and fluently and structure evidence-based arguments, selecting genres and employing appropriate structures and features to communicate for specific purposes and audiences.

Numeracy

Numeracy is key to students’ ability to apply a wide range of inquiry skills, including making and recording observations; ordering, representing and analysing data; and interpreting trends and relationships. They employ numeracy skills to interpret complex spatial and graphic representations, and to appreciate the ways in which systems are structured, interact and change across spatial and temporal scales. They engage in analysis of data, including issues relating to reliability and probability, and they interpret and manipulate mathematical relationships to calculate and predict values.

Information and communication technology capability

Information and communication technology (ICT) capability is a key part of aviation skills. Students use a range of strategies to locate, access and evaluate information from multiple digital sources; to collect, analyse and represent data; to model and interpret concepts and relationships; and to communicate and share science ideas, processes and information. Through exploration of aviation concepts, students assess the impact of ICT on the development of aviation, particularly with regard to collating, storing, managing and analysing large data sets.

Critical and creative thinking

Critical and creative thinking is particularly important in the science inquiry process. Science inquiry, as it is applied in aviation, requires the ability to construct, review and revise questions and hypotheses about increasingly complex and abstract scenarios and to design related investigation methods. Students interpret and evaluate data; interrogate, select and cross-reference evidence; and analyse processes, interpretations, conclusions and claims for validity and reliability, including reflecting on their own processes and conclusions. Science is a creative endeavour and students devise innovative solutions to problems, predict possibilities, envisage consequences and speculate on possible outcomes as they develop Science Understanding and Science Inquiry Skills. They also appreciate the role of critical and creative individuals and the central importance of critique and review in the development and innovative application of science.
Personal and social capability

Personal and social capability is integral to a wide range of activities in the Aviation General course, as students develop and practise skills of communication, teamwork, decision-making, initiative-taking and self-discipline with increasing confidence and sophistication. In particular, students develop skills in both independent and collaborative investigation; they employ self-management skills to plan effectively, follow procedures efficiently and work safely; and they use collaboration skills to conduct investigations, share research and discuss ideas. Students also recognise the role of their own beliefs and attitudes in their response to issues and applications pertaining to aviation, and consider the perspectives of others.

Ethical understanding

Ethical understanding is a vital part of science inquiry. Students evaluate the ethics of codes of practice, and the use of information and its applications. They explore what integrity means in an industry like aviation, and they understand, critically analyse and apply ethical guidelines in their investigations. They consider the implications of their investigations on others and the environment. They use scientific information to evaluate the claims and actions of others and to inform ethical decisions about a range of social, environmental and personal issues and applications of science.

Intercultural understanding

Intercultural understanding means that students appreciate the contributions of diverse cultures to developing and applying understanding, and the challenges of working in culturally diverse collaborations. They develop awareness that raising some debates within culturally diverse groups requires cultural sensitivity, and they demonstrate open-mindedness to the positions of others. Students also develop an understanding that cultural factors affect the ways in which aviation influences and is influenced by society.

Representation of the cross-curriculum priorities

The cross-curriculum priorities address the contemporary issues which students face in a globalised world. Teachers may find opportunities to incorporate the priorities into the teaching and learning program for the Aviation General course. The cross-curriculum priorities are not assessed unless they are identified within the specified unit content.

Aboriginal and Torres Strait Islander histories and cultures

Students can appreciate the role of Aboriginal and Torres Strait Islander Peoples’ knowledge in developing richer understandings of the nature of the Australian environment, for example, its physiography and its seasons.

Asia and Australia’s engagement with Asia

Contexts that draw on Asian scientific research and development and collaborative endeavours in the Asia Pacific region provide an opportunity for students to investigate Asia and Australia’s engagement with Asia. Students examine the important role played by people of the Asia region in such areas as materials science, nanotechnology and energy security. They consider collaborative projects between Australian and Asian scientists and the contribution these make to scientific knowledge.
Sustainability

In the Aviation General course, the Sustainability cross-curriculum priority provides authentic contexts for exploring, investigating and understanding the function and interactions of physical systems. By investigating the relationships between physical systems and their system components, and how systems respond to change, students develop an appreciation for the ways in which interactions between matter and energy connect to affect Earth’s hydrosphere and atmosphere. Students appreciate that science and its applications provide the basis for decision making in many areas of society and that these decisions can impact on the aviation industry. They understand the importance of using science to predict possible effects of human and other activity, such as the use of fossil fuels in order to develop management plans, alternative technologies or approaches, such as green chemistry, that minimise these effects and provide for a more sustainable future.
Unit 3

Unit description

The focus of this unit is the further development of aviation concepts related to flying training and general aviation. Students develop their understanding of aerodynamics. They apply the terminology and principles of navigation to learn how to prepare aeronautical maps for visual navigation. They explore the formation and interaction of weather on aviation operations. Students understand the principles, purpose and need for safety management in aviation. Students consider issues associated with flight crew resource management and the development of threat and error management (TEM).

In Aviation development, they study a selection of current developments in aviation looking at the factors driving the developments, and their likely impact.

Unit content

An understanding of the Year 11 content is assumed knowledge for students in Year 12. It is recommended that students studying Unit 3 and Unit 4 have completed Unit 1 and Unit 2.

This unit includes the knowledge, understandings and skills described below.

Aerodynamics

Principles of flight

• review disposition of forces of an aircraft in level flight, a climb with power, descent, glide and turn
• aerodynamic characteristics of stalling and spinning
• wing loading and load factor calculations and consequent increase in stall speed
• factors affecting directional stability: position of centre of gravity, size of the fin and rudder movement
• factors affecting lateral stability: high and low wing configurations, dihedral configurations, sweepback
• factors affecting longitudinal stability: position of centre of gravity, movement of centre of pressure, changes in thrust, tailplane movement
• spiral instability, static and dynamic stability
• purpose and operation of trim tabs, stability
• purpose and use of spoilers and speed brakes

Performance and operation

Navigation, meteorology and radio communication

• air navigation terminology including: indicated air speed, calibrated airspeed, drift, estimated time of departure, actual time of departure, estimated time of arrival, actual time of arrival, estimated time interval, actual time interval, air position, dead reckoning position, track required, track made good, and cross wind component
• principles of air navigation including
 ▪ application of magnetic variation and deviation in the operation of the compass
 ▪ the relationship between heading/TAS, wind speed and direction, and track and ground speed (triangle of velocities)
 ▪ using a map, calculate one of the velocities, given the other two
 ▪ determination of drift angle (track made good to track required) and the adjustment required to correct it and return to the track required by a given point using a map
 ▪ performing speed/time/distance/fuel calculations using a calculator
 ▪ determining head/tailwind and crosswind components graphically, given a wind velocity and direction

• time
 ▪ effects of Earth’s rotation and revolution around the Sun in relation to beginning and end of daylight and period of daylight

• flight planning
 ▪ the purpose and use of QNH, QFE, 1013 hPa pressure datums
 ▪ the purpose and distinction between the use of flight levels and altitude
 ▪ the concepts of pressure height and density height

• general concepts of meteorology
 ▪ cloud formation processes
 ▪ atmospheric stability and instability, adiabatic process, environmental lapse rate
 ▪ synoptic chart interpretation
 ▪ seasonal weather conditions in different regions of Australia with respect to visibility, prevailing winds, typical cloud patterns and precipitation, seasonal pressures and frontal systems, and tropical cyclones
 ▪ the purpose of the current weather forecasts and reports used by general aviation
 ▪ occurrence and formation of thunderstorms, low cloud, fog (advection and radiation), poor visibility, turbulence, thermals, dust devils, wind shear, microbursts, tropical cyclones and the nature of the hazard which each poses to aircraft operations

Aviation skills

Practical flight skills

• use of Microsoft Flight Simulator – Cessna 172 to demonstrate general handling of aircraft including:
 ▪ normal take-off and landing
 ▪ straight and level flight
 ▪ climbing, descending
 ▪ medium turn, Rate 1 turn, steep turn (45° and 60° angles of bank)
 ▪ transition from climb to level flight
 ▪ transition from level flight to climb
 ▪ transition from level flight to cruise descent and glide
 ▪ transition from descent to level flight
 ▪ entry and recovery from power off stall
 ▪ appropriate trim changes
Process skills

- identify potential safety hazards
- communicate effectively with others in verbal or written forms
- record observations verbally and graphically
- research and extract relevant information
- make reliable measurements and accurately record data

Human factors

Aviation safety

- common causes of general aviation aircraft accidents
- reasons for incorporating TEM into aircraft operations
- effects of human factors on aviation safety, including stress, training, fatigue, communication skills, assertiveness and judgement, cockpit culture
- effects on aviation safety of aircraft design, ergonomics, maintenance, air traffic control, and meteorological factors
- the importance of situational awareness on decision making associated with safe flight

Aviation development

- factors influencing the ongoing development and/or likely impact of:
 - aircraft capacity and range
 - power plants (fuel efficiency, electric)
 - safety management system
 - unmanned aerial vehicle (UAV)
 - aircraft noise
Unit 4

Unit description

The focus for this unit is aviation concepts related to flying operations and general aviation. In this unit, students further their understanding of rotary wing aircraft and aircraft engines, including the principles associated with turbine engines. They investigate different types of propeller design and their operation, and further develop their ability to interpret performance charts for light aircraft. Students are introduced to advanced cockpit displays and examine advanced aircraft navigation and electronic aids.

They examine human physiology pertinent to flight. Visual and physiological deficiencies and their implications for flight are also explored. They consider the effects of toxic substances and acceleration forces on flight crew.

In aviation development, students study a selection of current issues facing the aviation industry and consider their likely impact on aviation and the community.

Unit content

This unit builds on the content covered in Unit 3.

This unit includes the knowledge, understandings and skills described below.

Aerodynamics

Principles of flight

• Rotary wing
 ▪ forces acting on helicopters in flight
 ▪ principles of lift and drag
 ▪ helicopter controls
 ▪ flight manoeuvres – hovering, transition and translational lift, cruise, descent, vertical ascent and descent (autorotation)
 ▪ principles associated with helicopter operation including gyroscopic precession, retreating blade stall, coning, Coriolis effect, tail rotor drift,

Performance and operation

Navigation, meteorology and radio communication

• principles of operation, purpose and limitations of the:
 ▪ inertial navigation system (INS)
 ▪ global navigation systems (GPS, Gallileo, Glonass)
 ▪ primary surveillance radar (PSR)
 ▪ secondary surveillance radar (SSR)
 ▪ instrument landing system (ILS)
 ▪ automatic dependent surveillance broadcast (ADSB)

• visual approach slope guidance systems (T-VASIS, VASIS, PAPI)
Aircraft performance

- airspeed limitations: normal operating speed (Vno), never exceed speed (Vne), maximum manoeuvring speed (Va), turbulence penetration speed (Vb), flap operating speed (Vfo), flap extension speed (Vfe), stall speed (Vs) in clean and landing configuration
- configuring an aircraft for maximum range or maximum endurance
- the effect of altitude on engine performance
- design and operation of turbochargers and superchargers
- using the Piper Turbo Lance aircraft as an example of an advanced light aircraft, determine, under a range of parameters:
 - fuel use, time and distance to climb and descend
 - TAS, cruise power settings and associated rates of climb
- purpose, components and operation of basic aircraft electrical, hydraulic, pressurisation and de-icing systems
- principles of operation of constant speed propeller engine
- coordinated use of throttle and propeller pitch to maintain a desired power setting
- variation of propeller design, including full feathering and reverse pitch
- correct use of mixture control, manifold air pressure, and engine RPM controls
- purpose of engine manifold air pressure gauge
- principles and operation of turbine engines, Newton’s Third Law
- differences between turbofan, turbojet and turboprop engines and their individual advantages and limitations
- thrust reversal systems
- development of EFIS/HUD glass cockpit
- presentation of information on EFIS and HUD displays, advantages and disadvantages of each on aircraft operations

Aviation skills

Practical flight skills

- use of Microsoft Flight Simulator – Cessna 172 to demonstrate general handling of aircraft including:
 - normal take-off and landing
 - straight and level flight
 - climbing, descending
 - medium turn, Rate 1 turn, steep turn (45° and 60° angles of bank)
 - transition from climb to level flight
 - transition from level flight to climb
 - transition from level flight to cruise descent and glide
 - transition from descent to level flight
• entry and recovery from power off stall
• appropriate trim changes

• interpretation of ILS, T-VASIS, PAPI, VOR, DME and ADF instruments

Human factors
• causes, symptoms and remedies of hypoxia and hyperventilation
• causes and effects of decompression sickness after scuba diving and its relationship to flight
• role of the semi-circular canals in visual meteorological conditions (VMC) and instrument meteorological conditions (IMC)
• effects and dangers of spatial disorientation
• physiological effects of noise
• standards and effects of visual acuity required of a pilot
• effect on visual acuity of acceleration forces, dietary deficiencies, hypoxia, and carbon monoxide poisoning
• problems in flight associated with colour blindness, smoking, drugs, flicker vertigo, night operations
• effects of colour vision defects in aviators
• the effects of common eye deficiencies, including myopia, hypermetropia, astigmatism and presbyopia in flight if uncorrected
• common visual illusions that affect aircrew
• sources, symptoms and effects of carbon monoxide poisoning, and the effect of breathing air contaminated by other noxious products, including fuel
• effects on pilot performance of smoking, alcohol and drugs, including both medical and illegal drugs
• regulations pertaining to drugs and alcohol in aviation
• causes, symptoms and treatment for motion sickness
• effects on the human body of positive and negative accelerations (G-forces)
• G-induced loss of consciousness (G-LOC) and methods of reducing adverse effects of G-LOC, such as pressure suits
• stages leading to G-LOC

Aviation development
• issues affecting aviation development and their likely impact on aviation and the community, including:
 • air traffic growth in Asia
 • air traffic congestion in Europe and USA
 • low cost carriers
School-based assessment

The Western Australian Certificate of Education (WACE) Manual contains essential information on principles, policies and procedures for school-based assessment that needs to be read in conjunction with this syllabus.

Teachers design school-based assessment tasks to meet the needs of students. The table below provides details of the assessment types for the Aviation General Year 12 syllabus and the weighting for each assessment type.

Assessment table – Year 12

<table>
<thead>
<tr>
<th>Type of assessment</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigation</td>
<td>45%</td>
</tr>
<tr>
<td>Test</td>
<td>25%</td>
</tr>
<tr>
<td>Practical skills test</td>
<td>15%</td>
</tr>
<tr>
<td>Externally set task</td>
<td>15%</td>
</tr>
</tbody>
</table>

Teachers are required to use the assessment table to develop an assessment outline for the pair of units. The assessment outline must:

- include a set of assessment tasks
- include a general description of each task
- indicate the unit content to be assessed
- indicate a weighting for each task and each assessment type
- include the approximate timing of each task (for example, the week the task is conducted, or the issue and submission dates for an extended task).

All assessment types must be included in the assessment outline at least twice with the exception of the externally set task which only occurs once.

The set of assessment tasks must provide a representative sampling of the content for Unit 3 and Unit 4.
Assessment tasks not administered under test/controlled conditions require appropriate validation/authentication processes.

Externally set task

All students enrolled in the Aviation General Year 12 course will complete the externally set task developed by the Authority. Schools are required to administer this task in Term 2 at a time prescribed by the Authority.

Externally set task design brief – Year 12

<table>
<thead>
<tr>
<th>Time</th>
<th>One hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>Written</td>
</tr>
<tr>
<td></td>
<td>Conducted under invigilated conditions</td>
</tr>
<tr>
<td></td>
<td>Typically between five and ten questions</td>
</tr>
<tr>
<td></td>
<td>Questions can require students to refer to source material</td>
</tr>
<tr>
<td>Content</td>
<td>The Authority informs schools during Term 3 of the previous year of the Unit 3 syllabus content on which the task will be based</td>
</tr>
</tbody>
</table>

Refer to the WACE Manual for further information.

Grading

Schools report student achievement in terms of the following grades:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Excellent achievement</td>
</tr>
<tr>
<td>B</td>
<td>High achievement</td>
</tr>
<tr>
<td>C</td>
<td>Satisfactory achievement</td>
</tr>
<tr>
<td>D</td>
<td>Limited achievement</td>
</tr>
<tr>
<td>E</td>
<td>Very low achievement</td>
</tr>
</tbody>
</table>

The teacher prepares a ranked list and assigns the student a grade for the pair of units. The grade is based on the student’s overall performance as judged by reference to a set of pre-determined standards. These standards are defined by grade descriptions and annotated work samples. The grade descriptions for the Aviation General Year 12 syllabus are provided in Appendix 1. They can also be accessed, together with annotated work samples, through the Guide to Grades link on the course page of the Authority website at www.scsa.wa.edu.au

To be assigned a grade, a student must have had the opportunity to complete the education program including the assessment program (unless the school accepts that there are exceptional and justifiable circumstances).

Refer to the WACE Manual for further information about the use of a ranked list in the process of assigning grades.
Appendix 1 – Grade descriptions Year 12

<table>
<thead>
<tr>
<th>Grade</th>
<th>Understanding and applying concepts</th>
<th>Investigation</th>
<th>Communication skills</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Synthesises broad concepts about aircraft systems, performance and operation in a range of contexts. Evaluates the validity of aviation information by assessing the value of the evidence presented. Demonstrates well-developed thinking skills when exploring issues. Organises material and presents clear and coherent arguments supported by evidence.</td>
<td>Analyses a problem to identify issues and develop a plan of action. Uses resources appropriately. Recognises inconsistencies and suggests ways of reducing them.</td>
<td>Logically and coherently communicates information and concepts. Uses correct terminology and conventions. Constructs clearly labelled graphs from the data provided, and uses appropriate charts to solve problems.</td>
<td>Effectively applies a range of skills when performing aviation tasks to solve a range of unpredictable problems. Recognises and acts upon responsibilities within a task.</td>
</tr>
<tr>
<td>B</td>
<td>Applies broad concepts about aircraft systems, performance and operation. With guidance, evaluates the validity of aviation information by assessing the value of the evidence presented. Demonstrates analytical thinking skills when exploring issues. Organises material and presents arguments that are clear, coherent and supported by evidence in most instances.</td>
<td>Interprets a problem to identify issues of concern. Makes specific suggestions for improving the outcome in a given scenario. Collects appropriate information, organises it and uses data effectively.</td>
<td>Communicates information and concepts logically, using correct terminology and conventions. Constructs clearly labelled graphs from the data provided.</td>
<td>Applies a range of skills to perform aviation tasks in solving unpredictable problems. Recognises and acts upon most responsibilities within a task.</td>
</tr>
<tr>
<td>C</td>
<td>Applies concepts about aircraft systems, performance and operation in a range of operational contexts. With guidance, evaluates the validity of aviation information by assessing the value of the evidence presented. Demonstrates some analytical thinking skills when exploring issues. Organises material and presents arguments clearly, supporting key points with some evidence.</td>
<td>Interprets a defined problem to identify issues of concern. Makes general suggestions for improving the outcome in a given scenario. Collects limited information but organises it and uses data appropriately.</td>
<td>Communicates information in little detail; uses some correct terminology and conventions. In most instances, constructs clearly labelled graphs from the data provided.</td>
<td>Applies a limited range of skills to perform aviation tasks. Demonstrates some emerging independence in solving a range of problems.</td>
</tr>
<tr>
<td>Level</td>
<td>Understanding and applying concepts</td>
<td>Investigation</td>
<td>Communication skills</td>
<td>Performance</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>D</td>
<td>Recalls and applies aspects of aircraft systems, performance and operation with a few inaccuracies. Comments on key features of reasoning, such as, comparisons, causes and examples.</td>
<td>With guidance, interprets a defined problem to identify issues of concern. Collects very limited information, but organises it and uses data appropriately.</td>
<td>Communicates information using simple terminology, but makes frequent errors in the use of conventions.</td>
<td>Performs aviation tasks relying on guidance and close supervision; applies a limited range of skills. Demonstrates limited independence when addressing a defined range of unpredictable problems. Shows limited recognition of responsibilities.</td>
</tr>
<tr>
<td>E</td>
<td>Recalls and applies a small number of aspects of aircraft systems, performance and operation, in a limited range of operational contexts. With guidance, comments on some major features of reasoning, such as comparisons, causes and examples.</td>
<td>With considerable guidance, identifies some variables and offers solutions, although these are typically very limited. Follows instructions, but uses little or no data.</td>
<td>Communicates ineffectively, rarely using aviation terminology.</td>
<td>Performs aviation tasks related to aircraft take-off, landing performance and aircraft loading only under close supervision. Demonstrates very limited problem solving skills and shows little recognition of responsibilities.</td>
</tr>
</tbody>
</table>