SAMPLE COURSE OUTLINE

PHYSICAL EDUCATION STUDIES
ATAR YEAR 11
Sample course outline
Physical Education Studies – ATAR Year 11
Unit 1 and Unit 2

<table>
<thead>
<tr>
<th>Week</th>
<th>Key teaching points</th>
<th>Assessment</th>
</tr>
</thead>
</table>
| 1–2 | **Developing physical skills and tactics**
- develop a range of sport-specific movement skills and techniques to enhance performance
- select and adapt skills and techniques in games and other competitive situations
- select and apply tactics to solve sport specific tactical problems
 - gain and maintain possession and control
 - start and restart play
 - create, use and define space
 - respond to opposition formations and patterns of play
Note: The above content areas are ongoing and will be addressed throughout the practical skill development teaching and learning activities.
Functional anatomy
- use of musculoskeletal structures in the production of movement
 - bones
 - humerus
 - radius
 - ulna
 - femur
 - patella
 - muscles
 - biceps
 - triceps
 - gastrocnemius
 - trapezius
 - deltoid
- tibia
- fibula
- pelvis
- sternum
- ribs
- carpals
- metacarpals
- phalanges
- tarsals
- metatarsals
- biceps
- triceps
- gastrocnemius
- trapezius
- deltoid
- quadriceps
- hamstrings
- tibialis anterior
- adductor group
- latissimus dorsi
- soleus
- abdominal
- gluteus maximus
- pectorals |
| 3 | **Functional anatomy**
- structure and function of the circulatory system
 - heart
 - arteries
 - veins
 - capillaries
 - blood
- structure and function of the respiratory system
 - lungs, diaphragm, alveoli
 - mechanics of breathing |
<table>
<thead>
<tr>
<th>Week</th>
<th>Key teaching points</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4–5</td>
<td>Functional anatomy
• characteristics of skeletal muscle tissue and their relationship to the production of movement for physical activity
 ▪ fibre types (slow and fast twitch)
 ▪ excitability
 ▪ contractibility
 ▪ extendibility
 ▪ elasticity
• relationship between the musculoskeletal system and joint movement in the creation of movement
 ▪ antagonist pairs
 ▪ origin and insertion points of muscles
• movement types created by muscle action and joint movement
 ▪ flexion
 ▪ circumduction
 ▪ extension
 ▪ supination
 ▪ rotation
 ▪ dorsi flexion
 ▪ pronation
 ▪ abduction
 ▪ plantar flexion
 ▪ adduction</td>
<td>Task 1: topic test
(7.5%)</td>
</tr>
<tr>
<td>6–7</td>
<td>Biomechanics
• definition of linear motion and how it applies to a selected sport in relation to speed, velocity, acceleration, instantaneous measure/mean measure
• definition of projectile motion and how it applies to a selected sport in relation to the principle of optimal projection, parabolic trajectory, release of projectiles – angle, velocity and height</td>
<td></td>
</tr>
<tr>
<td>8–9</td>
<td>Biomechanics
• definition of angular motion and how it applies to a selected sport in relation to angular velocity
• definition of general motion and how it applies to a selected sport</td>
<td></td>
</tr>
<tr>
<td>10–11</td>
<td>Biomechanics
• definition of the principle of balance and how it applies to a selected sport in relation to:
 ▪ the centre/line of gravity, width of base of support, height of centre of gravity
 ▪ static balance
 ▪ dynamic balance</td>
<td>Task 2: skill performance
(5%)</td>
</tr>
<tr>
<td>12–13</td>
<td>Biomechanics
• definition of Newton’s First, Second and Third Laws of Motion, and how they apply to sporting contexts
• the coordination of linear motion
 ▪ sequential versus simultaneous movement – accuracy and power
 ▪ summation of velocity</td>
<td>Task 3: biomechanical analysis
(7.5%)</td>
</tr>
<tr>
<td>Week</td>
<td>Key teaching points</td>
<td>Assessment</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| 14 | **Motor learning and coaching**
• classification of motor skills
 ▪ gross
 ▪ fine
 ▪ open
 ▪ closed
 ▪ discrete
 ▪ serial
 ▪ continuous
• Fitts and Posner phases of motor learning and how they can be used to develop/improve specific physical skills | |
| 15 | **Motor learning and coaching**
• types of cues used to improve performance
 ▪ visual
 ▪ verbal
 ▪ proprioceptive
• phases of information processing during skill performance
 ▪ identification of stimuli/input
 ▪ response identification/decision making
 ▪ response/output
 ▪ feedback | |
| 16 | **Motor learning and coaching**
• types of feedback
 ▪ intrinsic (inherent)
 ▪ extrinsic (augmented) – terminal, concurrent, verbal, non-verbal
• purpose of feedback
 ▪ reinforcement
 ▪ motivation | Task 4: Semester 1 written examination (15%) (in exam week) |
| 17 | **Motor learning and coaching**
• relationship between skill learning processes and individual differences related to age, skill and fitness level, injury, level of competition, and type of activity | |
| 18 | **Exercise physiology**
• immediate responses to physical activity
 ▪ heart rate (HR)
 ▪ stroke volume
 ▪ blood pressure (BP)
 ▪ cardiac output
 ▪ tidal volume
 ▪ respiratory rate
 ▪ maximum oxygen uptake (VO₂ max)
 ▪ gas exchange
 ▪ arteriovenous oxygen difference
 ▪ blood redistribution | |
<table>
<thead>
<tr>
<th>Week</th>
<th>Key teaching points</th>
<th>Assessment</th>
</tr>
</thead>
</table>
| 19 | **Exercise physiology**
 • long-term adaptations to training
 ▪ cardiac output
 ▪ heart rate (HR)
 ▪ blood pressure (BP)
 ▪ blood volume/haemoglobin
 ▪ stroke volume
 ▪ capillarisation
 ▪ ventilation
 ▪ oxygen exchange
 ▪ muscle hypertrophy
 ▪ increased flexibility
 ▪ increased aerobic and anaerobic capacity | |
| 20 | Exercise physiology
 • utilisation of carbohydrates, fats and proteins as energy sources for physical activity, and their role in the onset of fatigue | Task 5: skill performance (10%) |
| 21 | **Exercise physiology**
 • response of energy systems to physical activity
 ▪ anaerobic – adenosine triphosphate-creatine phosphate (ATP-CP)
 ▪ lactic acid
 ▪ aerobic | |
| 22 | **Exercise physiology**
 • relationship between energy systems and types of physical activity
 ▪ the energy system continuum | Task 6: physiology lab (7.5%) |
| 23 | **Exercise physiology**
 • definition of training types
 ▪ resistance training – isometric, isotonic, isokinetic
 ▪ interval training
 ▪ continuous training
 ▪ circuit training
 ▪ fartlek
 ▪ flexibility
 ▪ plyometrics | |
| 24 | **Exercise physiology**
 • principles of training
 ▪ specificity in relation to the nature of activity, positions and roles
 ▪ intensity
 ▪ duration
 ▪ frequency
 ▪ progressive overload
 ▪ reversibility
 • components of fitness
 ▪ cardiorespiratory endurance
 ▪ muscular strength
 ▪ muscular endurance
 ▪ flexibility
 ▪ body composition
 ▪ agility
 ▪ balance
 ▪ coordination
 ▪ reaction time
 ▪ speed
 ▪ power | |
<table>
<thead>
<tr>
<th>Week</th>
<th>Key teaching points</th>
<th>Assessment</th>
</tr>
</thead>
</table>
| 25 | **Exercise physiology**
• interrelationship between training types, principles of training and fitness components | Task 7: topic test
(7.5%) |
| 26–27| **Sports psychology**
• mental skills required for improving performance and achieving the ideal performance state ('the zone')
 ▪ intrinsic motivation
 ▪ self-confidence
 ▪ stress management
 ▪ concentration or attentional control – Nideffer’s model
 ▪ arousal regulation related to individual performance
 ▪ inverted U hypothesis | |
| 28–29| **Sports psychology**
• mental skills and strategies used to manage stress, motivation, concentration and arousal levels
 ▪ self-talk
 ▪ self-imagery
 ▪ relaxation
• influence of age, skill level, and type of activity on mental skills in relation to motivation, arousal regulation (inverted U hypothesis), concentration
• evaluation and reassessment of personal goals according to changing situations
 ▪ age
 ▪ skill level
 ▪ type of activity | Task 8: competitive performance
(15%) |
| 30 | Examination revision | Task 9: Semester 2 written examination
(25%) |