SAMPLE COURSE OUTLINE

HUMAN BIOLOGY
GENERAL YEAR 12
Sample course outline

Human Biology – General Year 12

Unit 3 and Unit 4

Semester 1 – Unit 3 – Coordination

<table>
<thead>
<tr>
<th>Week</th>
<th>Key teaching points</th>
</tr>
</thead>
</table>
| 1–2 | • The skeleton as the structural framework of the body
 • Major bones and their functions
 • Macroscopic and microscopic structure of the bone
 • Development of bone for growth and repair |
| 3–4 | • Function of joints in terms of support and movement
 • Types of joints and the range of movement they permit, including immovable, cartilaginous, hinge, pivot, gliding and ball and socket
 • General structure of synovial joints
 • Location of different joints in the human body
 • Treatment of damage to joints and bones depends on the severity of the injury
 • Range and examples of treatments from simple first aid and medication to surgery
 Task 1: Extended response (research and validation) – Conditions relating to sporting injuries or damage to the nervous system |
| 5–6 | • The coordinated functioning of the muscles and skeleton to allow movement and support for the body against gravity; muscle tone
 • Movement about a joint as a result of the contraction of paired muscles attached to articulated bones by tendons and supported by ligaments
 • General structure of muscles (names of bands, zones and lines not essential)
 Task 2: Science inquiry (practical) – Chicken wing dissection |
| 7 | • Causes and treatments of selected dysfunctions of the muscular system
 Task 3: Test – Muscular and skeletal systems |
| 8 | • Function of the nervous system
 • Divisions of the nervous system – peripheral and central
 • Structures and functions of the brain: cerebellum, cerebrum, brainstem and spinal cord
 • Protection of the central nervous system by bone, meninges and cerebrospinal fluid |
| 9 | • Examples of stimuli and the types of receptors that detect them
 • Location of the different receptors in the human body
 • Structure of the ear, eye and skin and the types of stimuli they respond to |
| 10 | • Components of the reflex arc
 • Interactions of the nervous and musculoskeletal systems to allow coordinated movement and balance
 • Science inquiry skills, including experimental design and representation of data
 Task 4: Science inquiry (investigation) – Reaction times |
| 11 | • Causes and treatments of selected dysfunction of the nervous system
 • Advancements in the treatment of injuries due to research |
| 12 | • Function of endocrine glands and hormones
 • Components of negative feedback: receptor, modulator, effector, response and feedback
 • Negative feedback loops relating to endocrine function such as sugar, water and thyroxine |
| 13 | • Location of endocrine glands, including hypothalamus, pituitary, adrenal gland, pancreas, thyroid, pineal and parathyroid glands, testes, ovaries and placenta
 Task 5: Externally set task |
| 14–15| • The metabolic effects and negative feedback loops for cortisol, growth hormone and adrenaline
 • Hormone replacement therapies
 Task 6: Test – Nervous and endocrine systems |
<table>
<thead>
<tr>
<th>Week</th>
<th>Key teaching points</th>
</tr>
</thead>
</table>
| 1–2 | • Timeline for microscope development and its impact on identifying the link between pathogens and the diseases they cause
 • Use of microscopes to dispel myths and misconceptions of disease
 Task 7: Science inquiry (practical) – Monocular and stereoscopic microscope use |
| 3–4 | • Different types of diseases and examples of infectious diseases
 • Examples of different hosts
 • Types of pathogens and the diseases they cause
 • Specific examples of Ross River disease, influenza, food poisoning, tinea and malaria
 Task 8: Science inquiry (investigation) – Does the environment affect the growth of micro-organisms? |
| 5–6 | • The impact of human movement on the facilitation of transmission and spread of disease
 • Adaptive features of pathogens that enable them to enter hosts and be transmitted
 • Examples of pathogens transmitted by: direct and indirect contact, contaminated food and water, air-borne transmission, disease-specific vectors |
| 7 | • Methods of preventing transmission of diseases such as quarantine, immunisation and disruption to the life-cycle of the pathogen |
| 8 | • Examples of work places with an emphasis on hygiene such as food preparation industries and hospitals
 Task 9: Test – Infectious disease |
| 9 | • Medical intervention to reduce the rate and severity of infection
 • Antiseptics
 • Antibiotics
 • Antivirals |
| 10 | • Treatments and preventative measures used to reduce disease transmission, including: improved hygiene for water and food, quarantine measures, antiseptics and antibiotics
 • Development of multi-resistant bacteria (superbugs)
 • Risks associated with misuse of antibiotics and other treatments |
| 11 | • Responses to infection including the inflammatory response
 • Types of natural and artificial immunity leading to the production of memory cells
 • Increase in allergy disorders, especially in children
 • Possible causes of the increase
 • The ‘hygiene hypothesis’ |
| 12 | • Global variations in hygiene standards
 • Australia’s hygiene practices and standards |
| 13 | • International response to pandemics such as SARS and bird flu
 • Methods of reducing foreign diseases on isolated populations
 Task 10: Extended response (research and validation) – The local, regional and global response to Ebola |
| 14 | • Impact of population density on disease transmission
 • Human movement and its influence on disease transmission
 • Impact of disease by human movement differs between communities
 • Isolated communities show greater effects of this impact |
| 15 | • General names of sexually transmitted infections
 • Impact of social behaviour on the transmission, spread and persistence of sexually transmitted infections
 Task 11: Test – Vaccines, immunology and community and global health |