APPLIED INFORMATION TECHNOLOGY
ATAR COURSE

Year 11 syllabus
IMPORTANT INFORMATION

This syllabus is effective from 1 January 2015.

Users of this syllabus are responsible for checking its currency.

Syllabuses are formally reviewed by the School Curriculum and Standards Authority on a cyclical basis, typically every five years.

Copyright

© School Curriculum and Standards Authority, 2014.

This document – apart from any third party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority’s moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution-NonCommercial 3.0 Australia licence.
Content

Rationale .. 1
Course outcomes .. 2
Organisation .. 3
 Structure of the syllabus .. 3
 Organisation of content .. 3
 Progression from the Year 7–10 curriculum .. 5
 Representation of the general capabilities .. 5
 Representation of the cross-curriculum priorities .. 8
Unit 1 – Media information and communication technologies .. 9
 Unit description ... 9
 Unit content ... 9
Unit 2 – Digital technologies in business ... 14
 Unit description ... 14
 Unit content .. 14
School-based assessment ... 18
 Grading .. 19
Appendix 1 – Grade descriptions Year 11 .. 20
Appendix 2 – Glossary ... 22
Rationale

The development and application of digital technologies impacts most aspects of living and working in our society. Digital technologies have changed how people interact and exchange information. These developments have created new challenges and opportunities in lifestyle, entertainment, education and commerce.

Throughout the Applied Information Technology ATAR course, students investigate client-driven issues and challenges, devise solutions, produce models or prototypes and then evaluate and refine the design solution in collaboration with the client. Students are provided with the opportunity to experience, albeit in a school environment, developing digital solutions for real situations.

The practical application of skills, techniques and strategies to solve information problems is a key focus of the course. Students also gain an understanding of computer systems and networks. In undertaking projects and designing solutions the legal, ethical and social issues associated with each solution are also considered and evaluated.

This course provides students with the opportunity to develop the knowledge and skills of digital technologies. It also encourages students to use digital technologies in order to use them in a responsible and informed manner.

The Applied Information Technology ATAR course provides a sound theoretical and practical foundation, offering pathways to further studies and a wide range of technology based careers.
Course outcomes

The Applied Information Technology ATAR course is designed to facilitate achievement of the following outcomes.

Outcome 1 – Design process

Students apply a design process when creating or modifying information solutions using digital technologies in response to a client brief.

In achieving this outcome, students:

- research ideas considering alternatives
- analyse, design, produce, communicate and evaluate proposals in an efficient and appropriate manner.

Outcome 2 – Understanding digital communication technologies

Students understand the nature and use of computer hardware and software to achieve digital solutions.

In achieving this outcome, students:

- understand the digital concepts, formats and terminology required to select and use appropriate software and hardware to achieve client-driven digital solutions
- understand procedures, techniques and management skills relevant to the client’s needs
- produce a quality solution that adheres to the accepted standards and conventions associated with the content relevant to the client brief.

Outcome 3 – Impacts of technology

Students understand how legal, ethical and social considerations are interconnected in the development of digital solutions.

In achieving this outcome, students:

- understand the legal, ethical and social consequences that digital developments have in effectively securing data
- understand the legal, ethical and social implications of data distribution.
Organisation

This course is organised into a Year 11 syllabus and a Year 12 syllabus. The cognitive complexity of the syllabus content increases from Year 11 to Year 12.

Structure of the syllabus

The Year 11 syllabus is divided into two units, each of one semester duration, which are typically delivered as a pair. The notional time for each unit is 55 class contact hours.

Unit 1 – Media information and communication technologies

This unit focuses on the use of digital technologies to create and manipulate digital media. Students use a range of applications to create visual and audio communications. They examine trends in digital media transmissions and implications arising from the use of these technologies.

Unit 2 – Digital technologies in business

This unit focuses on the skills, principles and practices associated with various types of documents and communications. Students identify the components and configuration of networks to meet the needs of a business. They design digital solutions for clients, being mindful of the various impacts of technologies within legal, ethical and social boundaries.

Each unit includes:
- a unit description – a short description of the focus of the unit
- unit content – the content to be taught and learned.

Organisation of content

The course content is divided into the following content areas:

- Design concepts (Unit 1)
- Managing data (Unit 2)
- Hardware (Unit 1)
- Networks (Unit 2)
- Impacts of technology (Unit 1 and Unit 2)
- Applications skills (Unit 1 and Unit 2)
- Project management (Unit 1 and Unit 2)

Design concepts

When designing quality solutions, it is necessary to consider the intended audience and use the appropriate elements of design and the principles of design. Students develop strategies for applying digital technologies in creative and original ways for different purposes.
Managing data
Students acquire an understanding of how to source, organise, process, transform, store and manage a range of digital data types. They apply efficient search strategies for research purposes. An understanding of security and statutory requirements in relation to information processing and management is developed.

Hardware
Students develop an understanding of common computer hardware system components, their compatibility and connectivity. Functions such as processing, input, output, memory/storage and communication are considered. Students use appropriate terminology, technical references/manuals, help procedures and other support facilities.

Networks
The components of a network, including the communication media used to connect them, are examined. Content includes the types, purpose and use of protocols, servers, operating systems in communications and network security.

Impacts of technology
The rights of individuals, groups and communities regarding privacy, including responsibility for the access, availability and security of information and their potential misuse, are explored. Students examine the role of relevant government and regulatory bodies in protecting these rights.

Applications skills
Students learn, select and apply appropriate software application skills in the development of digital solutions. Students need to be aware of the purpose and desired output in order to integrate the various applications and associated skills.

Project management
Students use problem-solving skills to develop digital solutions that meet client needs. Individuals use project management skills to produce digital solutions according to a design brief.

Resource requirements
It is recommended that for delivery of the Applied Information Technology ATAR course, students have access to the following resources.

- computers with access to the internet
- peripheral devices, including:
 - scanner/photocopier/printer (multi-function device)
 - printers
 - digital still and video cameras
 - microphones and speakers
 - mobile devices
• applications software
 ▪ spreadsheet software
 ▪ word processing software
 ▪ presentation software
 ▪ multimedia software
 ▪ personal communication software
 ▪ collaborative management software
 ▪ browser software
 ▪ web authoring software

Progression from the Year 7–10 curriculum

This syllabus continues to develop student learning around the knowledge, understandings and skills within the Year 7–10 Digital Technologies curriculum and focuses on the components of digital systems: software, hardware and networks and their use.

The syllabus also continues to develop the skills associated with the production of digital solutions through: collecting, managing and analysing data; defining problems; designing, implementing and evaluating solutions; and communicating, collaborating and managing projects.

Representation of the general capabilities

The general capabilities encompass the knowledge, skills, behaviours and dispositions that will assist students to live and work successfully in the twenty-first century. Teachers may find opportunities to incorporate the capabilities into the teaching and learning program for the Applied Information Technology ATAR course. The general capabilities are not assessed unless they are identified within the specified unit content.

Literacy

Students become literate as they develop the knowledge, skills and dispositions to use and interpret language confidently for learning and communicating in and out of school and for participating effectively in society. Literacy involves students in listening to, reading, viewing, speaking, writing and creating oral, print, visual and digital texts, and using and modifying language for different purposes in a range of contexts.

In the Applied Information Technology ATAR course, students develop literacy capability as they learn how to communicate ideas, concepts and detailed proposals to a variety of audiences; recognise how language can be used to manipulate meaning; and read and interpret detailed written instructions. They learn to understand and use language to discuss and communicate information, concepts and ideas related to the course.

In the Applied Information Technology ATAR course, students understand that language varies according to context and they increase their ability to use language flexibly. The vocabulary of the Applied Information Technology ATAR course is often technical and includes specific terms for concepts, processes and production. Students learn to understand that much technological information is presented in the form of drawings, diagrams and digitally. They also learn the importance of listening and talking when learning about technologies processes, especially in articulating, questioning and evaluating ideas.
Numeracy

Students become numerate as they develop the knowledge and skills to use mathematics confidently across other learning areas at school and in their lives more broadly. Numeracy involves students in recognising and understanding the role of mathematics in the world, and having the dispositions and capacities to use mathematical knowledge and skills purposefully.

In the Applied Information Technology ATAR course, students work with the concepts of scale and proportion. The Applied Information Technology ATAR course provides opportunities for students to interpret and use mathematical knowledge and skills in a range of real life situations. Students develop and apply mathematical knowledge and skills to analyse, interpret and present information in numerical and graphical form and to make sense of data presented.

Information and communication technology capability

Students develop information and communication technology (ICT) capability as they learn to use ICT effectively and appropriately to access, create and communicate information and ideas, solve problems and work collaboratively, and in their lives beyond school. The ICT capability involves students in learning to make the most of the digital technologies available to them. They adapt to new ways of doing things as technologies evolve, and limit the risks to themselves and others in a digital environment.

In the Applied Information Technology ATAR course, students create solutions that consider social and environmental factors when operating digital systems with digital information. They develop an understanding of the characteristics of data, digital systems, audiences and procedures. They apply this when they investigate, communicate and create purpose-designed digital solutions. Students learn to formulate problems, logically organise and analyse data and represent it in abstract forms. Students decide the best combinations of data, procedures and human and physical resources to generate efficient and effective digital solutions.

Critical and creative thinking

Students develop capability in critical and creative thinking as they learn to generate and evaluate knowledge, clarify concepts and ideas, seek possibilities, consider alternatives and solve problems. Critical and creative thinking are integral to activities that require students to think broadly and deeply using skills, behaviours and dispositions, such as reason, logic, resourcefulness, imagination and innovation in all learning areas at school and in their lives beyond school.

In the Applied Information Technology ATAR course, students develop capability in critical and creative thinking as they imagine, generate, develop, produce and critically evaluate ideas. They develop reasoning and the capacity for abstraction through challenging problems that do not have straightforward solutions. They identify, explore and clarify technologies, information and use the knowledge gained in a range of situations. In the Applied Information Technology ATAR course, students think critically and creatively, they consider how data, information and systems impact our lives and how these elements might be better designed and managed.
Personal and social capability

Students develop personal and social capability as they learn to understand themselves and others and manage their relationships, lives, work and learning more effectively. The personal and social capability involves students in a range of practices, including: recognising and regulating emotions; developing empathy for others and understanding relationships; establishing and building positive relationships; making responsible decisions; working effectively in teams; handling challenging situations constructively; and developing leadership skills.

In the Applied Information Technology ATAR course, students develop personal and social capability as they engage in project management and development in a collaborative workspace. They direct their own learning, plan and carry out investigations, and become independent learners who can apply design thinking, technologies, understanding and skills when making decisions. Students develop social and employability skills through working cooperatively in teams, sharing resources, tools, equipment and processes, making group decisions, resolving conflict and showing leadership. Design and innovation involve a degree of risk taking, and as students work with the uncertainty of sharing new ideas, they develop resilience.

The Applied Information Technology ATAR course enhances students’ personal and social capability by developing their social awareness. Students develop understanding of diversity by researching and identifying user needs. They develop social responsibility through the understanding of empathy with, and respect for, others.

Ethical understanding

Students develop ethical understanding as they identify and investigate concepts, values, character traits and principles, and understand how reasoning can help ethical judgement. Ethical understanding involves students in building a strong personal, socially oriented, and ethical outlook that helps them to manage context, conflict and uncertainty, and to develop an awareness of the influence that their values and behaviour have on others.

In the Applied Information Technology ATAR course, students develop the capacity to understand and apply ethical and socially responsible principles when collaborating with others and when creating, sharing and using technologies, data, processes, tools and equipment. In the Applied Information Technology ATAR course, students consider their own roles and responsibilities as discerning citizens, and learn to detect bias and inaccuracies. Understanding the protection of data, intellectual property and individual privacy in the school environment helps students to be ethical digital citizens.

Intercultural understanding

Students develop intercultural understanding as they learn to value their own cultures, languages and beliefs, and those of others. They come to understand how personal, group and national identities are shaped, and the variable and changing nature of culture. The capability involves students in learning about, and engaging with, diverse cultures in ways that recognise commonalities and differences, create connections with others and cultivate mutual respect.

In the Applied Information Technology ATAR course, students consider how technologies are used in diverse communities at local, national, regional and global levels, including their impact and potential to transform people’s lives. They explore ways in which past and present practices enable people to use technologies to interact with one another across cultural boundaries.
Representation of the cross-curriculum priorities

The cross-curriculum priorities address the contemporary issues which students face in a globalised world. Teachers may find opportunities to incorporate the priorities into the teaching and learning program for the Applied Information Technology ATAR course. The cross-curriculum priorities are not assessed unless they are identified within the specified unit content.

Aboriginal and Torres Strait Islander histories and cultures

The Applied Information Technology ATAR course may provide opportunities for students to learn about Aboriginal and Torres Strait Islander histories and cultures. Students could explore the creative, engaging and diverse learning contexts so students can value and appreciate the contribution by the world’s oldest continuous living cultures to past, present and emerging technologies.

Asia and Australia’s engagement with Asia

The Applied Information Technology ATAR course may provide opportunities for students to explore contemporary and emerging technological achievements that the Asia region and Pacific region have made and continue to make, to global technological advances, including: innovation in hardware and software design and development; the regions’ role in outsourcing of information technology and communication (ICT) services; and globalisation. Students could also consider the contribution of Australia’s contemporary and emerging technological achievements to the Asian and Pacific regions.

Sustainability

The Applied Information Technology ATAR course may provide an opportunity for students, within authentic contexts, to choose and evaluate digital technologies and information systems with regard to the risks and opportunities they present. They also could evaluate the extent to which information systems solutions can embrace sustainability. They reflect on past and current practices, and assess new and emerging technologies from a sustainability perspective.
Unit 1 – Media information and communication technologies

Unit description

This unit focuses on the use of digital technologies to create and manipulate digital media. Students use a range of applications to create visual and audio communications. They examine trends in digital media transmissions and implications arising from the use of these technologies.

Unit content

This unit includes the knowledge, understandings and skills described below.

The content of this unit encompasses theoretical aspects (Knowledge) and practical aspects (Skills). It is divided into five content areas:

- Design concepts
- Hardware
- Impacts of technology
- Application skills
- Project management

Design concepts

Knowledge

- the elements of design
 - line
 - shape
 - space
 - texture
 - colour
 - 3D form
 - tone
- the principles of design
 - balance
 - emphasis (contrast and proportion)
 - dominance
 - unity (proximity and repetition)
 - pattern
 - movement
- relationship between the elements of design and the principles of design
- typography
 - typeface
 - size
• alignment
• format
• spacing

• compositional rules
 • reading gravity
 • rule of thirds
 • form of content
 • grid and alignment

Skills
• identify and explain the elements of design and the principles of design in an existing digital product and/or digital solution
• modify a digital product and/or digital solution to meet a design need/consideration
• apply the elements of design and the principles of design developing a digital product and/or digital solution
 • create accurate visuals/layouts
 • apply principles of layout and composition
• apply the elements of design and the principles of design relevant to a particular design brief
• develop and apply detailed annotations for digital designs relevant to a design brief demonstrating the following considerations:
 • elements of design and the principles of design
 • use of appropriate typography
 • visual composition
 • rule of thirds
 • form of content
 • grid and alignment

Hardware
Knowledge
• hardware components of a computer system
• purpose of the central processing unit (CPU)
• purpose of memory/storage
• types of memory/storage
 • primary
 • secondary
• types of peripheral devices
• types of computer systems
 • desktop systems
 • mobile devices
 • server
• purpose of an operating system
• types of operating systems
 ▪ Windows
 ▪ Mac OS
 ▪ iOS
 ▪ Android
 ▪ Linux

• functions of an operating system (OS)
 ▪ user interface
 ▪ managing system resources
 ▪ managing security and access rights
 ▪ running applications

• identification of software compatibility issues
 ▪ running older software on current hardware
 ▪ newer software running on older hardware

Skills

• describe criteria when selecting hardware and software for a specified purpose, including the minimum hardware requirements to run software

Impacts of technology

Knowledge

• intent and purpose of the *Copyright Act 1968* (Australia), including:
 ▪ fair dealing
 ▪ private use
 ▪ moral rights

• appropriate referencing techniques for digital publications

• acknowledgement of the intellectual property (IP) owner

• concept of digital citizenship
 ▪ responsible use of social networking
 ▪ forms of cyber bullying
 ▪ strategies to manage/limit cyber bullying

• the impact of digital technologies on work-life balance

• concept of social networking

• types of social networking and their features

• types of virtual communities, including:
 ▪ online chat rooms
 ▪ virtual worlds

Skills

• apply appropriate referencing techniques for digital publications
Application skills

Knowledge

- purpose of data organisation
- common file formats for graphics and audio
 - vector graphics
 - computer graphics metafile (.cgm)
 - scalable vector graphic (.svg)
 - raster graphics
 - bitmap (.bmp) image file
 - graphical interchange format (.gif) file
 - joint photographic expert group (JPEG) image file (.jpg/.jpeg)
 - tagged image file (.tif)
 - portable network graphics (.png)
 - audio files
 - moving pictures experts group (.mp3)
 - waveform audio file format (.wav)
 - Windows media audio file (.wma)
- management of software
 - installation of software
 - update of software
- types of software licences
 - open and closed source
 - proprietary
 - shareware
 - freeware
- considerations for the construction and design of lookup tables in spreadsheets, including:
 - hlookup
 - vlookup
- organisation and management of data, using sort filters in spreadsheets

Skills

- apply data organisation techniques for user and/or client needs
- apply appropriate graphic and audio file types
 - vector graphics
 - raster graphics
 - audio files
- use lookup tables in spreadsheets, including:
 - hlookup
 - vlookup
- composition, layout and design considerations for the construction of spreadsheets
- apply sort filters in spreadsheets
Project management

Knowledge

• components of a project design process
 ▪ product purpose and design criteria
 ▪ target audience characteristics
 ▪ project presentation medium
 ▪ situation analysis
 ▪ style guide

• components of a design plan
 ▪ storyboard
 ▪ thumbnails (hand/digital)
 ▪ wireframes/sketches (hand/digital)

• criteria required to evaluate a digital product and/or digital solution

Skills

• apply the elements of design and the principles of design relevant to a particular design brief
• apply a design process to create a digital product and/or digital solution
• apply techniques for representing the design of a digital product and/or digital solution
Unit 2 – Digital technologies in business

Unit description

This unit focuses on the skills, principles and practices associated with various types of documents and communications. Students identify the components and configuration of networks to meet the needs of a business. Students design digital solutions for clients being, mindful of the various impacts of technologies within legal, ethical and social boundaries.

Unit content

This unit includes the knowledge, understandings and skills described below.

The content of this unit encompasses theoretical aspects (Knowledge) and practical aspects (Skills) of the Applied Information Technology ATAR course. It is divided into five content areas:

- Managing data
- Networks
- Impacts of technology
- Application skills
- Project management

Managing data

Knowledge

- consideration for the compression of files for the transfer and display of data
 - purpose
 - lossy compression
 - lossless compression
 - file sizes
- techniques for file size minimisation
 - cropping
 - resampling
- optimisation of files for
 - digital or online
 - print
- strategies for efficient online data management
- strategies for efficient document version control
- concept of cloud computing
- system utility tools and accessories for the efficient operation and maintenance of data, including:
 - disk clean-up tools
 - deletion of temporary files/internet cache
 - disk fragmentation
 - anti-malware, virus, SPAM and spyware
Skills

- use compression to optimise transfer and display of data
- use system utility tools and accessories to ensure efficient operation and maintenance of data
- apply document version control

Networks

Knowledge

- concept of computer networking
 - purpose
 - advantages
 - disadvantages
- types of transmission media
 - optic fibre
 - wired
 - wireless
- the concept transmission rates
- network topologies for local area network (LAN)
 - wired star
 - wireless
 - client server
 - peer-to-peer
- network components for internet connection for a small business
 - server
 - router
 - network interface card (NIC)
 - switch
 - modem

Skills

- design a suitable LAN topology

Impacts of technology

Knowledge

- impact of the Privacy Act 1988 (Australia) on:
 - the collection of personal information
 - how personal information is used
 - access to personal information
 - implications of identity theft
 - safe disposal of data
- concept of the ‘digital divide’ and associated issues, including:
 - availability of digital resources
 - use of digital technologies
 - availability of web-based applications
• concept of electronic commerce, including:
 ▪ implications of improved digital communications
 ▪ 24/7 communications
 ▪ online retail opportunities

• issues related to the dependency of society upon electronic and visual communication in business

Application skills

Knowledge

• features of animation software
 ▪ frame by frame
 ▪ tweens
 ▪ buttons
 ▪ simple actions
 ○ stop
 ○ start
 ○ move object

• features of audio software
 ▪ editing
 ▪ converting
 ▪ exporting

• features of web authoring
 ▪ hyper-links
 ▪ graphics
 ▪ templates
 ▪ types of files
 ○ cascading style sheet (.css)
 ○ hypertext markup language file (.htm/.html)

• types of online collaboration

• concept of responsive design

Skills

• use animation software

• edit audio files

• create a navigation map

• use web-authoring software

• use multimedia applications to edit and create a digital product and/or digital solution
Project management

Knowledge

- project management techniques
 - user/client requirements
 - plan of action
 - time management strategies
 - resources requirements
 - evaluation

Skills

- apply project management techniques to meet client requirements or a design brief
- apply a design process to create a digital product and/or digital solution
- ensure the digital product and/or digital solution meets identified user requirements
School-based assessment

The Western Australian Certificate of Education (WACE) Manual contains essential information on principles, policies and procedures for school-based assessment that needs to be read in conjunction with this syllabus.

Teachers design school-based assessment tasks to meet the needs of students. The table below provides details of the assessment types for the Applied Information Technology ATAR Year 11 syllabus and the weighting for each assessment type.

Assessment table – Year 11

<table>
<thead>
<tr>
<th>Type of assessment</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>40%</td>
</tr>
<tr>
<td>Students research information technology based ideas and processes to create digital solutions. This involves the application of project management approaches/techniques to a design process. The project can require students to refer to stimulus material. Stimulus material can include: extracts from newspapers or journal articles; screen captures of online media; diagrams; multimedia and/or graphics; and/or a scenario.</td>
<td></td>
</tr>
<tr>
<td>Short answer</td>
<td>15%</td>
</tr>
<tr>
<td>Short answer questions typically require students to respond to specific questions and/or analyse digital technology products and/or trends. Formats can include multiple-choice, and open and closed questions that can be scaffolded or sectionalised. Scaffolded or sectionalised questions may increase in difficulty. Questions can require students to refer to stimulus material. Stimulus material can include: extracts from newspapers or journal articles; screen captures of online media; diagrams; multimedia and/or graphics; and/or a scenario.</td>
<td></td>
</tr>
<tr>
<td>Extended answer</td>
<td>15%</td>
</tr>
<tr>
<td>Extended answer questions can be scaffolded or sectionalised. Questions are connected by a theme, idea and/or concept. Questions can require students to refer to stimulus material and use interpretative skills, and/or the application of critical thinking and analysis. Stimulus material can include: extracts from newspapers or journal articles; screen captures of online media; diagrams; multimedia and/or graphics; and/or a scenario.</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>30%</td>
</tr>
<tr>
<td>Typically conducted at the end of each semester and/or unit. In preparation for Unit 3 and Unit 4, the examination should reflect the examination design brief included in the ATAR Year 12 syllabus for this course.</td>
<td></td>
</tr>
</tbody>
</table>

Teachers are required to use the assessment table to develop an assessment outline for the pair of units (or for a single unit where only one is being studied).

The assessment outline must:

- include a set of assessment tasks
- include a general description of each task
- indicate the unit content to be assessed
- indicate a weighting for each task and each assessment type
- include the approximate timing of each task (for example, the week the task is conducted, or the issue and submission dates for an extended task).
In the assessment outline for the pair of units, each assessment type must be included at least twice. In the assessment outline where a single unit is being studied, each assessment type must be included at least once.

The set of assessment tasks must provide a representative sampling of the content for Unit 1 and Unit 2.

Assessment tasks not administered under test/controlled conditions require appropriate validation/authentication processes.

Grading

Schools report student achievement in terms of the following grades:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Excellent achievement</td>
</tr>
<tr>
<td>B</td>
<td>High achievement</td>
</tr>
<tr>
<td>C</td>
<td>Satisfactory achievement</td>
</tr>
<tr>
<td>D</td>
<td>Limited achievement</td>
</tr>
<tr>
<td>E</td>
<td>Very low achievement</td>
</tr>
</tbody>
</table>

The teacher prepares a ranked list and assigns the student a grade for the pair of units (or for a unit where only one unit is being studied). The grade is based on the student’s overall performance as judged by reference to a set of pre-determined standards. These standards are defined by grade descriptions and annotated work samples. The grade descriptions for the Applied Information Technology ATAR Year 11 syllabus are provided in Appendix 1. They can also be accessed, together with annotated work samples, through the Guide to Grades link on the course page of the Authority website at www.scsa.wa.edu.au.

To be assigned a grade, a student must have had the opportunity to complete the education program, including the assessment program (unless the school accepts that there are exceptional and justifiable circumstances).

Refer to the WACE Manual for further information about the use of a ranked list in the process of assigning grades.
Appendix 1 – Grade descriptions Year 11

<table>
<thead>
<tr>
<th>Grade</th>
<th>Knowledge and understanding</th>
<th>Design concepts</th>
<th>Application skills</th>
<th>Project management</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Accurately uses digital technology terminology, and discusses processes and concepts in context with justification.</td>
<td>Applies and justifies the use of the elements of design and the principles of design to modify/create a digital product and/or solution relevant to a design brief. Consistently applies compositional rules and typography, relevant to a design brief, with detailed and relevant annotations, providing reasons for the use.</td>
<td>Applies and justifies the use of data management techniques and uses relevant file types, to ensure the efficient transfer, storage, and display of data. Independently selects and uses application(s) using a range of relevant and complex features, consistently creating sophisticated and original digital products and/or solutions.</td>
<td>Applies and justifies the use of relevant project management techniques, efficiently and effectively to create a digital product and/or solution to meet client requirements or a design brief. Applies a design process/plan and/or techniques, successfully creating digital products and/or solutions, to meet client requirements or a design brief and proposes alternatives and improvements.</td>
</tr>
<tr>
<td>B</td>
<td>Accurately uses digital technology terminology, and describes processes and concepts in context.</td>
<td>Applies and discusses the use of the elements of design and the principles of design to modify/create a digital product and/or solution relevant to a design brief. Applies compositional rules and typography, relevant to a design brief, with detailed and appropriate annotations, appropriate to the design brief.</td>
<td>Applies and explains the use of data management techniques and uses appropriate file types, to ensure the transfer, storage, and display of data. Selects and uses application(s) using a range of appropriate features, consistently creating an original digital products and/or solutions.</td>
<td>Applies and explains the use of appropriate project management techniques, effectively creating a digital product and/or solution to meet client requirements or a design brief. Applies a design process/plan and/or techniques, successfully creating digital products and/or solutions, to meet client requirements or a design brief.</td>
</tr>
<tr>
<td>C</td>
<td>Uses digital technology terminology, and describes processes and concepts.</td>
<td>Applies and describes the elements of design and the principles of design to modify/create a digital product and/or solution relevant to a design brief. Applies compositional rules and typography, appropriate to a design brief, with detailed annotations, appropriate to the design brief.</td>
<td>Applies and describes the use of data management techniques and uses appropriate file types, to transfer, store and display data. Uses applications to edit and/or create a digital products and/or solutions using a range application features.</td>
<td>Applies and describes the use of project management techniques to create a digital product and/or solution to meet client requirements or a design brief. Applies a design process/plan and/or techniques, creating digital products and/or solutions, considering client requirements or a design brief.</td>
</tr>
<tr>
<td>Grade</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **D** | **Knowledge and understanding**
Attempts to use digital technology terminology, and inconsistently describes processes and concepts.
Design concepts
Lists and attempts to apply the elements of design and the principles of design to modify/create a digital product and/or solution.
Lists and attempts to apply composition rules and typography types used in digital designs.
Application skills
Applies and inconsistently describes the use of data management techniques and uses inappropriate file types to transfer, store and display data.
Attempts to use applications to edit and/or create digital products and/or solutions, using a limited and/or inappropriate range of application features.
Project management
Attempts to apply project management techniques to create incomplete digital products and/or solutions.
Attempts to apply a design process/plan and/or techniques, to create incomplete digital product and/or solution. |
| **E** | Does not meet the requirements of a D grade and/or has completed insufficient assessment tasks to be assigned a higher grade. |
Appendix 2 – Glossary

This glossary is provided to enable a common understanding of the key terms in this syllabus.

<table>
<thead>
<tr>
<th>Compositional rules</th>
<th>Provide the rules that include focal point/centre of interest, framing, leading lines, reading gravity, rule of thirds, underlying geometric framework, eye-flow.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Focal point/Centre of interest – refers to the central point of attention or interest within a design.</td>
<td></td>
</tr>
<tr>
<td>• Framing – is a technique used to present an image so that it immediately captures the viewer’s attention.</td>
<td></td>
</tr>
<tr>
<td>• Leading lines – used to draw the viewer into an image so that it is seen in the way intended. The designer uses leading lines so the image is viewed in a prescribed sequence.</td>
<td></td>
</tr>
<tr>
<td>• Reading gravity – the manner in which Western audiences read from left to right and top to bottom.</td>
<td></td>
</tr>
<tr>
<td>• Rule of thirds – an image can be divided into thirds, both horizontally and vertically, creating nine parts. The eye is naturally drawn to the intersection points of these thirds. This provides a grid for the designer to employ to direct attention.</td>
<td></td>
</tr>
<tr>
<td>• Underlying geometric framework, eye-flow – the way a designer plans their design to ensure that the viewer moves their eye around the page.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Digital citizenship</th>
<th>The manner in which a user accesses and interacts using digital technologies. Responsible digital citizenship refers to the major considerations of responsible digital behaviour, including:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Digital access – the ability to access electronic technologies</td>
<td></td>
</tr>
<tr>
<td>• Digital commerce – the electronic sale and/or purchase of goods</td>
<td></td>
</tr>
<tr>
<td>• Digital communication – the exchange of information via electronic devices</td>
<td></td>
</tr>
<tr>
<td>• Digital etiquette – acceptable codes of conduct when communicating online</td>
<td></td>
</tr>
<tr>
<td>• Digital health and wellness – the physical and mental well-being of those operating in the digital world, including ergonomics, and Internet addiction</td>
<td></td>
</tr>
<tr>
<td>• Digital law – the laws that govern acceptable behaviours in the online environment; including copyright, spam</td>
<td></td>
</tr>
<tr>
<td>• Digital literacy – the process of teaching and learning about technology and how it can be used</td>
<td></td>
</tr>
<tr>
<td>• Digital rights and responsibilities – the rights and responsibilities of anyone operating within the digital world</td>
<td></td>
</tr>
<tr>
<td>• Digital security – ensuring electronic safety of digital content from external threat.</td>
<td></td>
</tr>
</tbody>
</table>

| Elements of design | The parts or components within a design that can be individually defined. Together, the elements of design constructs the principles of design. They provide the basic structure for the product and are responsible for communicating the design intentions. The placement of the elements of design can alter the message communicated. |

| Evaluation criteria | The criteria employed to provide a consistent, standardised evaluation of products performance against an established benchmark or set of standards. |

<p>| Layout | The process of planning and arranging, in detail, how the design will be reproduced. The process of planning and arranging of the design enables the various elements of the design to produce an aesthetically pleasing and harmonious product. |</p>
<table>
<thead>
<tr>
<th>Principles of design</th>
<th>Specific concepts utilised to organise or arrange the structural aspects of a design. Designers choose principles to ensure that the intention of their message is clear to the target audience.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>A process or enterprise that is planned, designed and developed to achieve an aim. In the context of the Applied Information Technology ATAR course, students research information technology based ideas and processes that will require the application of project management approaches/techniques to a design process to create quality digital solutions.</td>
</tr>
<tr>
<td>Project management</td>
<td>The discipline of planning, organising, securing and managing resources to bring about the successful completion of a project efficiently and effectively.</td>
</tr>
<tr>
<td>Production process</td>
<td>The production process refers to the stages required to complete a product, from the idea to the completion of the final product.</td>
</tr>
<tr>
<td>Responsive design</td>
<td>A web design approach aimed at producing sites to provide an optimal viewing experience. This includes easy reading and navigation, requiring minimal resizing, panning, and scrolling. Designs should also be suitable across a wide range of devices, including smartphones, tablets, laptops and desktop monitors.</td>
</tr>
<tr>
<td>Style guide</td>
<td>The set of rules, conventions, procedures or standards used for the designing and development of documents for publication, either electronic or print.</td>
</tr>
</tbody>
</table>