Western Australian Certificate of Education
Examination, 2015

Question/Answer Booklet

PHYSICS
Stage 3

Student Number: In figures

In words

Time allowed for this paper
Reading time before commencing work: ten minutes
Working time for paper: three hours

Materials required/recommended for this paper
To be provided by the supervisor
This Question/Answer Booklet
Formulae and Data Booklet

To be provided by the candidate
Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Special items: non-programmable calculators approved for use in the WACE examinations, drawing templates, drawing compass and a protractor

Important note to candidates
No other items may be taken into the examination room. It is your responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor before reading any further.

Copyright © School Curriculum and Standards Authority 2015

Ref: 15-113
Structure of this paper

<table>
<thead>
<tr>
<th>Section</th>
<th>Number of questions available</th>
<th>Number of questions to be answered</th>
<th>Suggested working time (minutes)</th>
<th>Marks available</th>
<th>Percentage of exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section One: Short response</td>
<td>11</td>
<td>11</td>
<td>50</td>
<td>56</td>
<td>30</td>
</tr>
<tr>
<td>Section Two: Problem-solving</td>
<td>7</td>
<td>7</td>
<td>90</td>
<td>88</td>
<td>50</td>
</tr>
<tr>
<td>Section Three: Comprehension</td>
<td>2</td>
<td>2</td>
<td>40</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Instructions to candidates

1. The rules for the conduct of Western Australian external examinations are detailed in the *Year 12 Information Handbook 2015*. Sitting this examination implies that you agree to abide by these rules.

2. Write your answers in this Question/Answer Booklet.

3. When calculating numerical answers, show your working or reasoning clearly. Give final answers to three significant figures and include appropriate units where applicable.

 When estimating numerical answers, show your working or reasoning clearly. Give final answers to a maximum of two significant figures and include appropriate units where applicable.

4. You must be careful to confine your responses to the specific questions asked and to follow any instructions that are specific to a particular question.

5. Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer.
 - Planning: If you use the spare pages for planning, indicate this clearly at the top of the page.
 - Continuing an answer: If you need to use the space to continue an answer, indicate in the original answer space where the answer is continued, i.e. give the page number. Fill in the number of the question that you are continuing to answer at the top of the page.

6. The Formulae and Data Booklet is **not** to be handed in with your Question/Answer Booklet.
Section One: Short response 30% (56 Marks)

This section has 11 questions. Answer all questions.

When calculating numerical answers, show your working or reasoning clearly. Give final answers to three significant figures and include appropriate units where applicable.

When estimating numerical answers, show your working or reasoning clearly. Give final answers to a maximum of two significant figures and include appropriate units where applicable.

Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer.

- Planning: If you use the spare pages for planning, indicate this clearly at the top of the page.
- Continuing an answer: If you need to use the space to continue an answer, indicate in the original answer space where the answer is continued, i.e. give the page number. Fill in the number of the question that you are continuing to answer at the top of the page.

Suggested working time: 50 minutes.

Question 1 (2 marks)

A child on a playground swing swings higher and higher as a friend pushes.

Circle the correct answers.

The swing is undergoing

- free oscillation.
- forced oscillation.
- natural oscillation.

The swing’s behaviour is best described as

- resonance.
- a standing wave.
- an antinode.

Question 2 (3 marks)

The Milky Way galaxy (our galaxy) and the Andromeda galaxy are approximately 250 000 light years apart, and they are approaching each other at a rate of 110 km s⁻¹. Scientists know this because of the blue-shift of light coming from the Andromeda galaxy.

Read the following statements and circle ‘True’ or ‘False’.

<table>
<thead>
<tr>
<th>Light reaching the Milky Way from the Andromeda galaxy arrives slightly faster than 3×10^8 m s⁻¹.</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light reaching the Andromeda galaxy from the Milky Way galaxy would be red-shifted.</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>The Andromeda galaxy must be on a collision course with the Milky Way galaxy.</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>
Two students are playing a game of ping-pong (table tennis). The ball is served and begins its path from Point ‘A’, which is 40 cm above the level of the table. The trajectory then taken by the ball is also shown on the diagram above.

Each player hits the ball and gives it the same speed. Ignore any effect of friction or resistance between the table and the ball and air when answering the questions below.

(a) Consider the instantaneous motion of the ball at the moment that it has maximum contact with the table at Point ‘B’. By circling the appropriate arrows, indicate the direction of its

- velocity.
- net acceleration.
- net force. (3 marks)

(b) At which point (‘A’ or ‘C’) does the ball experience the greater acceleration? Justify your answer. (3 marks)

__ ... _______________________
__ ... _______________________
__ ... _______________________
__ ... _______________________
__ ... _______________________
__ ... _______________________
__ ... _______________________
__ ... _______________________
__ ... _______________________
__ ... _______________________

See next page
Question 4

A car wheel is held in place by four nuts. Each nut was put on by a machine that tightened it with a torque of \(3.00 \times 10^2\) N m.

The photograph below shows the 30.0 cm long horizontal lever that is used to remove the nuts from the wheel.

Assuming that it also takes \(3.00 \times 10^2\) N m to undo the nut, show (by calculation) that if a person of 90.0 kg stands on the end of the lever without bouncing, the weight is not enough to turn the wheel nut.
In the diagram below, I indicates a wire carrying a direct current (DC) into the page. There is also a pair of parallel electrostatically charged plates. The voltage across the parallel plates is V. An electron, e\(^{-}\), is fired into the set-up, travelling into the page as shown below. The ratio of electric force (F_e) to magnetic force (F_m) exerted on the electron is 0.6, i.e. $\frac{F_e}{F_m} = 0.6$. Ignore the effect of the Earth's magnetic and gravitational fields.

Sketch and label in the diagram above the relative magnitudes and directions of the:
- magnetic force on the electron (F_m)
- electric force (F_e) on the electron
- resultant force acting on the electron.
Question 6
(5 marks)

A ball of mass 1.50×10^{-2} kg rolls along a rail that includes a vertical loop of radius $R = 0.500$ m as shown. There is negligible friction.

At Point A the ball is just in contact with the rail. Draw a free body diagram of the ball when it is at Point A, and calculate the minimum velocity, v, required to keep it in contact with the rail at this point. Show all workings.

Free body diagram:

Calculation:
In order to drop a parcel, an aircraft flying horizontally 150 m above sea level with a speed of 216 km h\(^{-1}\) approaches from behind a surfaced submarine that is moving in the same direction. The speed of the surfaced submarine is 36.0 km h\(^{-1}\) and its deck is just at sea level. Ignore air resistance.

Calculate the time taken for the parcel to drop from the aircraft onto the surfaced submarine, and hence determine the horizontal distance from the submarine at which the aircraft must be when it releases the parcel. Show all workings.
Question 8

Maxine placed two speakers 12.0 m apart and facing one another. She connected them both to a sound generator, set it to 86.5 Hz, and turned it on. Then she walked at a steady speed of 0.800 m s\(^{-1}\) in a straight line from one speaker to the other.

Determine how many maximum loudness locations she walked through, and hence calculate the time it took for Maxine to walk from one maximum loudness point to the next.
A physics student sets up an electrical circuit that includes a small toy called a ‘slinky’, which is essentially a light, coiled metal spring. When the switch is closed and a current is passed through the coil from a small DC battery, the student discovers that a magnetic field exists around the slinky.

(a) On the diagram below, sketch the shape and direction of the magnetic field that will exist around the slinky when the switch is closed. (4 marks)

(b) The student also notices that at the moment that the switch is closed, there is a small movement in the slinky. Describe this movement. (1 mark)
Question 10 (4 marks)

An electron travelling at $1.26 \times 10^7 \text{ m s}^{-1}$ entered a uniform magnetic field of intensity $1.50 \times 10^{-3} \text{ T}$ at right angles to the field lines, as shown in the diagram.

An electron detector located along the line SR recorded an interaction with the electron. Calculate the distance between the entry point and the detector.
The first five energy levels (not to scale) of a hydrogen atom are shown in the figure below.

<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>$n=\infty$</td>
</tr>
<tr>
<td>-0.54</td>
<td>$n=5$</td>
</tr>
<tr>
<td>-0.85</td>
<td>$n=4$</td>
</tr>
<tr>
<td>-1.51</td>
<td>$n=3$</td>
</tr>
<tr>
<td>-3.39</td>
<td>$n=2$</td>
</tr>
<tr>
<td>-13.60</td>
<td>$n=1$</td>
</tr>
</tbody>
</table>

(a) Calculate the highest and lowest frequency photons that an excited electron in the $n=5$ level within a hydrogen atom can emit. Show all workings. (4 marks)

Highest: ___________ Hz Lowest: ___________ Hz

(b) In the diagram below, indicate the possible pathways by which an electron at energy level $n=3$ can return to ground state. (3 marks)

End of Section One

See next page
Section Two: Problem-solving

This section has seven (7) questions. Answer all questions. Write your answers in the spaces provided.

When calculating numerical answers, show your working or reasoning clearly. Give final answers to three significant figures and include appropriate units where applicable.

When estimating numerical answers, show your working or reasoning clearly. Give final answers to a maximum of two significant figures and include appropriate units where applicable.

Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer.

- Planning: If you use the spare pages for planning, indicate this clearly at the top of the page.
- Continuing an answer: If you need to use the space to continue an answer, indicate in the original answer space where the answer is continued, i.e. give the page number. Fill in the number of the question that you are continuing to answer at the top of the page.

Suggested working time: 90 minutes.
Question 12

An exoplanet is a planet that revolves around a star that is not our Sun. As one such exoplanet revolves around a distant star, it causes the star to oscillate, or wobble, in its path as the star and the exoplanet orbit their common centre of mass.

In the following calculations, assume that the centre of the exoplanet’s orbit coincides with the star’s centre of mass, and that the orbit is circular.

Some details of the star and the exoplanet are shown below:

- Mass of star \(M_s = 2.15 \times 10^{30} \) kg
- Mass of exoplanet \(M_p = 1.95 \times 10^{27} \) kg
- Distance between centre of planet and centre of star \(d_{sp} = 7.50 \times 10^9 \) m.

(a) Show that the magnitude of the gravitational force acting on the exoplanet is \(4.97 \times 10^{27} \) N.

(b) Calculate the exoplanet’s orbital velocity. Show all workings.
(c) Calculate the exoplanet’s orbital period, and express your answer in hours. Show all workings. (3 marks)

(d) About 20% of exoplanets discovered so far have a period of 120 hours or less. Explain briefly how red shift and blue shift can be used to identify which stars have such exoplanets. (3 marks)
Question 13 (12 marks)

A mobile phone, of resistance 4.00 Ω was connected to a charger (actually a small step-down transformer). The details of the charger are shown below.

Assume the charger to be 100% efficient.

PRIMARY COIL
- Input voltage: 240 V AC 50 Hz
- Turns: 432
- Power: 6.25 W

SECONDARY COIL
- Output voltage 5.00 V AC 50 Hz
- Turns: 9

The 5.00 V AC output of the charger was rectified to 5.00 V DC before charging the battery in the phone.

(a) State the power output of the secondary coil of the charger. __________ W (1 mark)

(b) Calculate the current flowing through the secondary coil while the battery was charging. Show all workings. (2 marks)

(c) When the mobile phone is charging, 5.00 V DC is used to charge the battery.

(i) State the number of joules carried by each coulomb of charge. (1 mark)

(ii) Calculate the amount of energy, in joules, carried by each electron as it charges the battery. Show all workings. (3 marks)
(d) The graph below shows the change in flux experienced by the secondary coil over one complete cycle.

By calculating any required values, and showing all workings, determine the magnitudes of the:

(i) time interval AE: ___________________________ s. (1 mark)

(ii) time interval AB: ___________________________ s. (1 mark)

(iii) flux value F at time B: ___________________________ Wb. (3 marks)
Question 14 (17 marks)

Sound intensity is defined as sound power per unit area, \(I = \frac{P}{A} \). Hence, the further away from a source, the more area \(\text{spherical area} = 4\pi r^2 \) the sound is spread across, and the less intense a sound appears to a person.

A physics student was asked to verify the formula \(I = \frac{P}{A} \). The experimental set-up was as follows.

The student used a microphone to monitor the level of the intensity of the sound at various distances. As the student moved the microphone along the track, the values were recorded in a table as follows.

<table>
<thead>
<tr>
<th>Intensity, (I) (W m(^{-2}))</th>
<th>Distance from speaker, (r) (m)</th>
<th>(\frac{1}{r^2}) (m(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 ± 1</td>
<td>0.5</td>
<td>4.0</td>
</tr>
<tr>
<td>10 ± 1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>5 ± 1</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>3 ± 1</td>
<td>2.0</td>
<td>0.25</td>
</tr>
<tr>
<td>2 ± 1</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

(a) Complete the last column in the table above with values expressed to **two** significant figures. (3 marks)

(b) Use the data from the table to plot a straight line graph (including error bars) on the grid provided, demonstrating the relationship between the intensity (W m\(^{-2}\)) and \(\frac{1}{r^2} \) (m\(^{-2}\)). (5 marks)
If you wish to make a second attempt at this item, the grid is repeated at the end of this Question/Answer Booklet. Indicate clearly on this page if you have used the second grid and cancel the working on this page.

See next page
Question 14 (continued)

(c) Determine the gradient of your line of best fit. Show all workings, and include units in your answer. (3 marks)

(d) Use your graph to determine the intensity at a distance of 0.70 m from the source. Show all workings, and express your answer using appropriate significant figures. (3 marks)

(e) Using the answer from (d), calculate the power output of the source. Show appropriate units. (2 marks)

(f) Using your answers to (c) and (e), did the physics student verify the formula \(I = P/A \)? (1 mark)
This page has been left blank intentionally
A 3.00 m long plank with a mass of 10.0 kg is held by a cable at Point P, 0.200 m away from the upper end of the plank. The angle between plank and ground is 20.0° and the angle between plank and cable is 30.0°. A 2.00 kg cat moves up the plank up to Point Q, 2.40 m from the bottom, Point O.

(a) Assuming that Point O is the pivot, calculate the tension in the cable. Show all workings. (6 marks)
(b) The cable is then moved up from Point A to Point B while maintaining the angle between the plank and cable at 30.0°. The angle between the plank and ground increases to 25.0°, as in Figure 2. Assume Point O as the pivot.

(i) State whether the tension in the cable increases or decreases. (1 mark)

(ii) Justify your answer. (3 marks)

See next page
Question 16

Somnang is an engineer and designed a road that had a horizontal curved section of radius \((50 \pm 5)\) m. After construction, it was necessary to check that the curvature of the road was constructed within tolerance.

To test the curvature of the road, Somnang hung a small mass of \(1.00 \times 10^2\) g from the rear-view mirror of his car using a light string. He then travelled at a constant speed of \(35.0\) km h\(^{-1}\) around the curve. Somnang observed that the string holding the mass settled at an angle of \(10.0^\circ\) to the vertical.

(a) On the diagram above, draw and label the forces acting on the hanging object. (2 marks)
(b) Calculate the tension in the light string. Show all workings. (3 marks)

(c) Calculate the centripetal force experienced by the hanging mass. Show all workings. (3 marks)

(d) From the information supplied and your previous answers, determine whether the curvature of the road was correct. Show all workings. (5 marks)
A permanent magnet slides down a plastic track and passes through two solenoid coils. The coils are connected in series and their windings are in the same direction. A centre-zero galvanometer (a very sensitive ammeter) is also connected in series with the coils. Assume that the contact between the magnet and plastic track is frictionless.

(a) Explain why a current is induced in a coil when the magnet enters and leaves it. (4 marks)

(b) State the expected reading on the galvanometer G as the magnet travels inside Coil 2. Justify your answer. (2 marks)

Reading:

Justification:

See next page
(c) Sketch the graphs of current versus time and velocity of the magnet versus time on the axes provided below. (8 marks)

If you wish to make a second attempt at this item, the axes are repeated at the end of this Question/Answer Booklet. Indicate clearly on this page if you have used the second set of axes and cancel the working on this page.
Question 18 (10 marks)

The recession speed of a Cepheid variable star was determined as 28 800 km s\(^{-1}\) moving away from the Earth. Assume that the star’s motion was due only to the expansion of space.

The star’s recession speed \(v_{\text{rec}}\) is linked to Hubble’s constant, \(H_0\), by the relationship \(v_{\text{rec}} = H_0 \times d\) where \(d\) is the distance of the star from the observer.

(a) Using appropriate assumptions and Hubble’s constant of 1.86 \(\times\) 10\(^{-5}\) km s\(^{-1}\) light-year\(^{-1}\), determine the star’s distance from an observer on the Earth. Include units in your answer, and show all workings. (3 marks)

(b) Estimate the star’s current distance from the Earth (in light-years), taking account of the distance that the star travelled while the light from the star travelled to Earth. Show all assumptions and workings. (5 marks)
(c) Estimate how long it would take for light to travel from the current position of the star to an observer on Earth. Explain why this must be an estimate. (2 marks)
Section Three: Comprehension 20% (35 Marks)

This section has two (2) questions. You must answer both questions. Write your answers in the spaces provided.

When calculating numerical answers, show your working or reasoning clearly. Give final answers to three significant figures and include appropriate units where applicable.

When estimating numerical answers, show your working or reasoning clearly. Give final answers to a maximum of two significant figures and include appropriate units where applicable.

Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer.

- Planning: If you use the spare pages for planning, indicate this clearly at the top of the page.
- Continuing an answer: If you need to use the space to continue an answer, indicate in the original answer space where the answer is continued, i.e. give the page number. Fill in the number of the question that you are continuing to answer at the top of the page.

Suggested working time: 40 minutes.

Question 19 (21 marks)

Cathode ray tube (CRT) television screens worked by firing a stream of electrons through a vacuum at a phosphor-coated screen. The electrons left the cathode and were accelerated by a uniform electric field toward the anode. Some passed through the very small hole at a high velocity. These electrons then travelled at a constant speed toward the screen.

These moving electrons excited the electrons within the phosphor atoms on the screen. Each phosphor-electron then emitted green, red or blue light as that phosphor-electron decayed back to its ground state.

A feature of the CRT technology was that a person who touched the screen during, or immediately after, operation could experience a mild electric shock, often accompanied by a spark, or a crackling sound.
(a) Calculate the force experienced by each electron as it left the cathode. Show all workings. (2 marks)

(b) Calculate the kinetic energy of each electron just prior to it colliding with a phosphor atom. Show all workings. (3 marks)

(c) Calculate the velocity of each electron as it struck the phosphor, assuming that these electrons began their journey from rest (and were free of their parent atoms). Show all workings. (3 marks)
Question 19 (continued)

(d) These electrons collided with the phosphor screen to produce a red light of wavelength 700 nm. Calculate the difference, in joules, between energy levels of the phosphor atoms associated with this emission. Show all workings. (5 marks)

(e) Not all of the electron’s kinetic energy was passed on to the phosphor atom to cause the emission of visible light. Give two possible ways in which the ‘missing’ energy might be dissipated. (2 marks)

One:

Two:

(f) Would the cathode ray tube work if its interior was not a vacuum? Justify your answer. (2 marks)

(g) Explain the effects experienced by a person who touched the screen of a CRT while it was operating. (4 marks)
Positron emission tomography (PET) is a modern technique used in medicine for imaging soft tissue. The patient lies within a detection ring of approximately 1 m diameter. A sugar-like substance called fluorodeoxyglucose (FDG) is injected directly into their bloodstream. The FDG molecule is absorbed into various tissues within the body in about an hour. This FDG molecule has a radioactive isotope 18F added to it which undergoes radioactive decay, emitting a positron. A positron is identical to an electron except that it carries an equal but opposite charge.

The positron travels about 1 mm through the soft tissue of the patient losing virtually all of its kinetic energy as it travels. Eventually, when moving slowly enough, it interacts with an electron from within the tissue. At this point the electron and the positron annihilate\(^1\) each other, producing a burst of two gamma rays, each with 512 keV of energy. These two gamma rays leave the site of the annihilation in opposite directions and are detected by the detection ring surrounding the patient.

The gamma rays arrive on opposite sides of the detection ring at approximately the same time and are known as ‘temporal pairs’. The line that connects where the two temporal gamma rays were detected is known as the line of response (LOR). The source of emission must lie somewhere along the LOR.

If the source of the gamma rays is in the exact centre of the LOR, then the rays arrive simultaneously. If the source of emission is not in the centre of the LOR, there is a slight delay in the arrival of one of the temporal gamma rays. Sophisticated electronics analyse the signal from the detection ring to isolate the true temporal pairs and ignore any background noise. Modern PET scanners can detect temporal pairs of gamma rays that arrive within 500 picoseconds of each other.

\(^1\) annihilate – destroy completely
Question 20 (continued)

(a) Determine the energy, in joules, of a single emitted gamma ray. (1 mark)

(b) Using the masses of the particles involved, show by calculation that the energy of each gamma ray is 512 keV. (5 marks)

(c) How far from the centre of a LOR would the source of emission be if the temporal gamma rays (travelling at the speed of light) arrived 500 picoseconds apart? Show all workings. (4 marks)
(d) As the gamma rays leave the patient’s body (mostly water) and travel through air to the detection ring, a slight change in velocity occurs. Name this phenomenon and explain the reason for it. (2 marks)

(e) What evidence is there for the particle nature of electromagnetic radiation (emr) in the quoted text? (2 marks)

End of questions
Additional working space

Question number: ________________

__
__
__
__
__
__
__
__
__
__
__
Question 14
Question 17

- Current i vs. Time t
- Velocity v vs. Time t

Coil 1 and Coil 2